Skip to main content
Log in

Physiologic Changes Associated with Cerebellar Dystonia

The Cerebellum Aims and scope Submit manuscript

Abstract

Dystonia is a neurologic disorder characterized by sustained involuntary muscle contractions. Lesions responsible for unilateral secondary dystonia are confined to the putamen, caudate, globus pallidus, and thalamus. Dysfunction of these structures is suspected to play a role in both primary and secondary dystonia. Recent evidence has suggested that the cerebellum may play a role in the pathophysiology of dystonia. The role of the cerebellum in ataxia, a disorder of motor incoordination is well established. How may the cerebellum contribute to two apparently very different movement disorders? This review will discuss the idea of whether in some cases, ataxia and dystonia lie in the same clinical spectrum and whether graded perturbations in cerebellar function may explain a similar causative role for the cerebellum in these two different motor disorders. The review also proposes a model for cerebellar dystonia based on the available animal models of this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Fahn S. The varied clinical expressions of dystonia. Neurol Clin. 1984;2(3):541–54.

    CAS  PubMed  Google Scholar 

  2. Berardelli A et al. The pathophysiology of primary dystonia. Brain. 1998;121(Pt 7):1195–212.

    Article  PubMed  Google Scholar 

  3. Marsden CD et al. The anatomical basis of symptomatic hemidystonia. Brain. 1985;108(Pt 2):463–83.

    Article  PubMed  Google Scholar 

  4. den Dunnen WF. Neuropathological diagnostic considerations in hyperkinetic movement disorders. Front Neurol. 2013;4:7.

    Google Scholar 

  5. Furukawa Y et al. Striatal dopamine in early-onset primary torsion dystonia with the DYT1 mutation. Neurology. 2000;54(5):1193–5.

    Article  CAS  PubMed  Google Scholar 

  6. Walker RH et al. TorsinA immunoreactivity in brains of patients with DYT1 and non-DYT1 dystonia. Neurology. 2002;58(1):120–4.

    Article  CAS  PubMed  Google Scholar 

  7. Rostasy K et al. TorsinA protein and neuropathology in early onset generalized dystonia with GAG deletion. Neurobiol Dis. 2003;12(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  8. McNaught KS et al. Brainstem pathology in DYT1 primary torsion dystonia. Ann Neurol. 2004;56(4):540–7.

    Article  CAS  PubMed  Google Scholar 

  9. Vitek JL et al. Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol. 1999;46(1):22–35.

    Article  CAS  PubMed  Google Scholar 

  10. Delmaire C et al. Structural abnormalities in the cerebellum and sensorimotor circuit in writer's cramp. Neurology. 2007;69(4):376–80.

    Article  CAS  PubMed  Google Scholar 

  11. Le Ber I et al. Predominant dystonia with marked cerebellar atrophy: a rare phenotype in familial dystonia. Neurology. 2006;67(10):1769–73.

    Article  PubMed  Google Scholar 

  12. Kuoppamaki M et al. Slowly progressive cerebellar ataxia and cervical dystonia: clinical presentation of a new form of spinocerebellar ataxia? Mov Disord. 2003;18(2):200–6.

    Article  PubMed  Google Scholar 

  13. van de Warrenburg BP et al. The syndrome of (predominantly cervical) dystonia and cerebellar ataxia: new cases indicate a distinct but heterogeneous entity. J Neurol Neurosurg Psychiatry. 2007;78(7):774–5.

    Article  PubMed Central  PubMed  Google Scholar 

  14. LeDoux MS, Brady KA. Secondary cervical dystonia associated with structural lesions of the central nervous system. Mov Disord. 2003;18(1):60–9.

    Article  PubMed  Google Scholar 

  15. Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4(1):2–6.

    Article  CAS  PubMed  Google Scholar 

  16. Eidelberg D et al. Functional brain networks in DYT1 dystonia. Ann Neurol. 1998;44(3):303–12.

    Article  CAS  PubMed  Google Scholar 

  17. Sadnicka A et al. The cerebellum in dystonia—help or hindrance? Clin Neurophysiol. 2012;123(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  18. Niethammer M et al. Hereditary dystonia as a neurodevelopmental circuit disorder: evidence from neuroimaging. Neurobiol Dis. 2011;42(2):202–9.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Argyelan M et al. Cerebellothalamocortical connectivity regulates penetrance in dystonia. J Neurosci. 2009;29(31):9740–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Campbell DB, Hess EJ. L-type calcium channels contribute to the tottering mouse dystonic episodes. Mol Pharmacol. 1999;55(1):23–31.

    CAS  PubMed  Google Scholar 

  21. Sprunger LK et al. Dystonia associated with mutation of the neuronal sodium channel Scn8a and identification of the modifier locus Scnm1 on mouse chromosome 3. Hum Mol Genet. 1999;8(3):471–9.

    Article  CAS  PubMed  Google Scholar 

  22. Lorden JF et al. Neuropharmacological correlates of the motor syndrome of the genetically dystonic (dt) rat. Adv Neurol. 1988;50:277–97.

    CAS  PubMed  Google Scholar 

  23. Pizoli CE et al. Abnormal cerebellar signaling induces dystonia in mice. J Neurosci. 2002;22(17):7825–33.

    CAS  PubMed  Google Scholar 

  24. LeDoux MS, Lorden JF, Ervin JM. Cerebellectomy eliminates the motor syndrome of the genetically dystonic rat. Exp Neurol. 1993;120(2):302–10.

    Article  CAS  PubMed  Google Scholar 

  25. Raman IM, Gustafson AE, Padgett D. Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J Neurosci. 2000;20(24):9004–16.

    CAS  PubMed  Google Scholar 

  26. Raman IM, Bean BP. Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J Neurosci. 1997;17(12):4517–26.

    CAS  PubMed  Google Scholar 

  27. Ito M et al. Inhibitory control of intracerebellar nuclei by the purkinje cell axons. Exp Brain Res. 1970;10(1):64–80.

    Article  CAS  PubMed  Google Scholar 

  28. Mittmann W, Koch U, Hausser M. Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J Physiol. 2005;563(Pt 2):369–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Dizon MJ, Khodakhah K. The role of interneurons in shaping Purkinje cell responses in the cerebellar cortex. J Neurosci. 2011;31(29):10463–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Thach WT. Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol. 1968;31(5):785–97.

    CAS  PubMed  Google Scholar 

  31. Frysinger RC et al. Cerebellar cortical activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. J Neurophysiol. 1984;51(1):32–49.

    CAS  PubMed  Google Scholar 

  32. Smith AM, Bourbonnais D. Neuronal activity in cerebellar cortex related to control of prehensile force. J Neurophysiol. 1981;45(2):286–303.

    CAS  PubMed  Google Scholar 

  33. Espinoza E, Smith AM. Purkinje cell simple spike activity during grasping and lifting objects of different textures and weights. J Neurophysiol. 1990;64(3):698–714.

    CAS  PubMed  Google Scholar 

  34. Wetts R, Kalaska JF, Smith AM. Cerebellar nuclear cell activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. J Neurophysiol. 1985;54(2):231–44.

    CAS  PubMed  Google Scholar 

  35. Medina JF, Lisberger SG. Variation, signal, and noise in cerebellar sensory-motor processing for smooth-pursuit eye movements. J Neurosci. 2007;27(25):6832–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Shidara M et al. Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature. 1993;365(6441):50–2.

    Article  CAS  PubMed  Google Scholar 

  37. Holdefer RN, Miller LE. Dynamic correspondence between Purkinje cell discharge and forelimb muscle activity during reaching. Brain Res. 2009;1295:67–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Thach WT. Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum. J Neurophysiol. 1978;41(3):654–76.

    CAS  PubMed  Google Scholar 

  39. Ebner TJ, Hewitt AL, Popa LS. What features of limb movements are encoded in the discharge of cerebellar neurons? Cerebellum. 2011;10(4):683–93.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Rispal-Padel L, Cicirata F, Pons C. Cerebellar nuclear topography of simple and synergistic movements in the alert baboon (Papio papio). Exp Brain Res. 1982;47(3):365–80.

    Article  CAS  PubMed  Google Scholar 

  41. Heiney SA et al. Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J Neurosci. 2014;34(6):2321–30.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Witter L et al. Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation. Front Neural Circ. 2013;7:133.

    Google Scholar 

  43. Hoshi E et al. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.

    Article  CAS  PubMed  Google Scholar 

  44. Calderon DP et al. The neural substrates of rapid-onset dystonia-Parkinsonism. Nat Neurosci. 2011;14(3):357–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Hore J, Wild B, Diener HC. Cerebellar dysmetria at the elbow, wrist, and fingers. J Neurophysiol. 1991;65(3):563–71.

    CAS  PubMed  Google Scholar 

  46. Hallett M, Shahani BT, Young RR. EMG analysis of patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1975;38(12):1163–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Hallett M et al. Physiological analysis of simple rapid movements in patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1991;54(2):124–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Bastian AJ, Zackowski KM, Thach WT. Cerebellar ataxia: torque deficiency or torque mismatch between joints? J Neurophysiol. 2000;83(5):3019–30.

    CAS  PubMed  Google Scholar 

  49. Flament D, Hore J. Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol. 1986;55(6):1221–33.

    CAS  PubMed  Google Scholar 

  50. Breakefield XO et al. The pathophysiological basis of dystonias. Nat Rev Neurosci. 2008;9(3):222–34.

    Article  CAS  PubMed  Google Scholar 

  51. Hallett M. Pathophysiology of dystonia. J Neural Transm Suppl. 2006;70:485–8.

    Article  PubMed  Google Scholar 

  52. Lehericy S et al. The anatomical basis of dystonia: current view using neuroimaging. Mov Disord. 2013;28(7):944–57.

    Article  PubMed  Google Scholar 

  53. Guehl D et al. Primate models of dystonia. Prog Neurobiol. 2009;87(2):118–31.

    Article  CAS  PubMed  Google Scholar 

  54. van der Kamp W et al. Rapid elbow movements in patients with torsion dystonia. J Neurol Neurosurg Psychiatry. 1989;52(9):1043–9.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Berardelli A et al. Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain. 1996;119(Pt 2):661–74.

    Article  PubMed  Google Scholar 

  56. Ozelius LJ et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet. 1997;17(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  57. MacKinnon CD et al. Corticospinal excitability accompanying ballistic wrist movements in primary dystonia. Mov Disord. 2004;19(3):273–84.

    Article  PubMed  Google Scholar 

  58. Carrea RM, Mettler FA. Physiologic consequences following extensive removals of the cerebellar cortex and deep cerebellar nuclei and effect of secondary cerebral ablations in the primate. J Comp Neurol. 1947;87(3):169–288.

    Article  CAS  PubMed  Google Scholar 

  59. Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press; 1958. 675 p.

    Google Scholar 

  60. Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9(9):885–94.

    Article  CAS  PubMed  Google Scholar 

  61. Walter JT et al. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci. 2006;9(3):389–97.

    Article  CAS  PubMed  Google Scholar 

  62. Shakkottai VG et al. Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. J Clin Invest. 2004;113(4):582–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Shakkottai VG et al. Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci. 2011;31(36):13002–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Kasumu AW et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol. 2012;19(10):1340–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Person AL, Raman IM. Synchrony and neural coding in cerebellar circuits. Front Neural Circ. 2012;6:97.

    Google Scholar 

  66. Gauck V, Jaeger D. The control of rate and timing of spikes in the deep cerebellar nuclei by inhibition. J Neurosci. 2000;20(8):3006–16.

    CAS  PubMed  Google Scholar 

  67. De Zeeuw CI et al. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci. 2011;12(6):327–44.

    Article  PubMed  Google Scholar 

  68. Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2012;481(7382):502–5.

    Article  CAS  Google Scholar 

  69. LeDoux MS, Hurst DC, Lorden JF. Single-unit activity of cerebellar nuclear cells in the awake genetically dystonic rat. Neuroscience. 1998;86(2):533–45.

    Article  CAS  PubMed  Google Scholar 

  70. Luna-Cancalon K et al. Alterations in cerebellar physiology are associated with a stiff-legged gait in Atcay mice. Neurobiol Dis. 2014;67C:140–8.

    Article  Google Scholar 

  71. McCormick DA, Contreras D. On the cellular and network bases of epileptic seizures. Annu Rev Physiol. 2001;63:815–46.

    Article  CAS  PubMed  Google Scholar 

  72. Chen G et al. Low-frequency oscillations in the cerebellar cortex of the tottering mouse. J Neurophysiol. 2009;101(1):234–45.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Dystonia Medical Research Foundation and the National Institutes of Health (K08NS072158 and R01NS085054) for their support.

Conflict of Interest

The author has no relevant conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram G. Shakkottai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakkottai, V.G. Physiologic Changes Associated with Cerebellar Dystonia. Cerebellum 13, 637–644 (2014). https://doi.org/10.1007/s12311-014-0572-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0572-5

Keywords

Navigation