Skip to main content
Log in

Functional Crosstalk Between Cell-Surface and Intracellular Channels Mediated by Junctophilins Essential for Neuronal Functions

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Junctophilins (JPs) contribute to the formation of junctional membrane complexes between the plasma membrane and the endoplasmic/sarcoplasmic reticulum, and provide a structural platform for channel communication during excitation–contraction coupling in muscle cells. In the brain, two neuronal JP subtypes are widely expressed in neurons. Recent studies have defined the essential role of neural JPs in the communication between cell-surface and intracellular channels, which modulates the excitability and synaptic plasticity of neurons in the cerebellum and hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–636

    PubMed  CAS  Google Scholar 

  2. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    Article  PubMed  CAS  Google Scholar 

  3. Flucher BE (1992) Structural-analysis of muscle development—transverse tubules, sarcoplasmic-reticulum, and the triad. Dev Biol 154:245–260

    Article  PubMed  CAS  Google Scholar 

  4. Tanabe T, Beam KG, Powell JA, Numa S (1988) Restoration of excitation–contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary-DNA. Nature 336:134–139

    Article  PubMed  CAS  Google Scholar 

  5. Takeshima H, Iino M, Takekura H, Nishi M, Kuno J, Minowa O et al (1994) Excitation–contraction uncoupling and muscular degeneration in mice lacking functional skeletal-muscle ryanodine-receptor gene. Nature 369:556–559

    Article  PubMed  CAS  Google Scholar 

  6. Endo M (1985) Calcium release from sarcoplasmic-reticulum. Curr Top Membr Transp 25:181–230

    CAS  Google Scholar 

  7. Takekura H, Takeshima H, Nishimura S, Takahashi M, Tanabe T, Flockerzi V et al (1995) Coexpression in Cho cells of 2 muscle proteins involved in excitation–contraction coupling. J Muscle Res Cell Motil 16:465–480

    Article  PubMed  CAS  Google Scholar 

  8. Suda N, Franzius D, Fleig A, Nishimura S, Bodding M, Hoth M et al (1997) Ca2+-induced Ca2+ release in Chinese hamster ovary (CHO) cells co-expressing dihydropyridine and ryanodine receptors. J Gen Physiol 109:619–631

    Article  PubMed  CAS  Google Scholar 

  9. Franzini-Armstrong C, Pinconraymond M, Rieger F (1991) Muscle-fibers from dysgenic mouse in vivo lack a surface component of peripheral couplings. Dev Biol 146:364–376

    Article  PubMed  CAS  Google Scholar 

  10. Ikemoto T, Komazaki S, Takeshima H, Nishi M, Noda T, Iino M et al (1997) Functional and morphological features of skeletal muscle from mutant mice lacking both type 1 and type 3 ryanodine receptors. J Physiol-Lond 501:305–312

    Article  PubMed  CAS  Google Scholar 

  11. Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22

    Article  PubMed  CAS  Google Scholar 

  12. Ito K, Komazaki S, Sasamoto K, Yoshida M, Nishi M, Kitamura K et al (2001) Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J Cell Biol 154:1059–1067

    Article  PubMed  CAS  Google Scholar 

  13. Nishi M, Sakagami H, Komazaki S, Kondo H, Takeshima H (2003) Coexpression of junctophilin type 3 and type 4 in brain. Mol Brain Res 118:102–110

    Article  PubMed  CAS  Google Scholar 

  14. Nishi M, Hashimoto K, Kuriyama K, Komazaki S, Kano M, Shibata S et al (2002) Motor discoordination in mutant mice lacking junctophilin type 3. Biochem Biophys Res Commun 292:318–324

    Article  PubMed  CAS  Google Scholar 

  15. Moriguchi S, Nishi M, Komazaki S, Sakagami H, Miyazaki T, Masumiya H et al (2006) Functional uncoupling between Ca2+ release and afterhyperpolarization in mutant hippocampal neurons lacking junctophilins. Proc Natl Acad Sci USA 103:10811–10816

    Article  PubMed  CAS  Google Scholar 

  16. Kakizawa S, Kishimoto Y, Hashimoto K, Miyazaki T, Furutani K, Shimizu H et al (2007) Junctophilin-mediated channel crosstalk essential for cerebellar synaptic plasticity. EMBO J 26:1924–1933

    Article  PubMed  CAS  Google Scholar 

  17. Konnerth A, Llano I, Armstrong CM (1990) Synaptic currents in cerebellar Purkinje-cells. Proc Natl Acad Sci USA 87:2662–2665

    Article  PubMed  CAS  Google Scholar 

  18. Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    Article  PubMed  Google Scholar 

  19. Kano M, Hashimoto K, Watanabe M, Kurihara H, Offermanns S, Jiang HP et al (1998) Phospholipase C beta 4 is specifically involved in climbing fiber synapse elimination in the developing cerebellum. Proc Natl Acad Sci USA 95:15724–15729

    Article  PubMed  CAS  Google Scholar 

  20. Kakizawa S, Yamasaki M, Watanabe M, Kano M (2000) Critical period for activity-dependent synapse elimination in developing cerebellum. J Neurosci 20:4954–4961

    PubMed  CAS  Google Scholar 

  21. Kakizawa S, Yamada K, Iino M, Watanabe M, Kano M (2003) Effects of insulin-like growth factor I on climbing fibre synapse elimination during cerebellar development. Eur J Neurosci 17:545–554

    Article  PubMed  Google Scholar 

  22. Kakizawa S, Miyazaki T, Yanagihara D, Iino M, Watanabe M, Kano M (2005) Maintenance of presynaptic function by AMPA receptor-mediated excitatory postsynaptic activity in adult brain. Proc Natl Acad Sci USA 102:19180–19185

    Article  PubMed  CAS  Google Scholar 

  23. Hashimoto K, Kano M (2005) Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum. Neurosci Res 53:221–228

    Article  PubMed  Google Scholar 

  24. Schmolesky MT, Weber JT, De Zeeuw CI, Hansel C (2002) The making of a complex spike: ionic composition and plasticity. Ann NY Acad Sci 978(1):359–390

    Article  PubMed  Google Scholar 

  25. Pedarzani P, Mosbacher J, Rivard A, Cingolani LA, Oliver D, Stocker M et al (2001) Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J Biol Chem 276:9762–9769

    Article  PubMed  CAS  Google Scholar 

  26. Knaus HG, Schwarzer C, Koch ROA, Eberhart A, Kaczorowski GJ, Glossmann H et al (1996) Distribution of high-conductance Ca2+-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosc 16:955–963

    CAS  Google Scholar 

  27. Womack MD, Khodakhah K (2002) Characterization of large conductance Ca2+-activated K+ channels in cerebellar Purkinje neurons. Eur J Neurosci 16:1214–1222

    Article  PubMed  Google Scholar 

  28. Edgerton JR, Reinhart PH (2003) Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J Physiol-Lond 548:53–69

    Article  PubMed  CAS  Google Scholar 

  29. Kohler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J et al (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273:1709–1714

    Article  PubMed  CAS  Google Scholar 

  30. Sailer CA, Kaufmann WA, Marksteiner J, Knaus HG (2004) Comparative immunohistochemical distribution of three small-conductance Ca2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Mol Cell Neurosci 26:458–469

    Article  PubMed  CAS  Google Scholar 

  31. Bond CT, Herson PS, Strassmaier T, Hammond R, Stackman R, Maylie J et al (2004) Small conductance Ca2+-activated K+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. J Neurosci 24:5301–5306

    Article  PubMed  CAS  Google Scholar 

  32. Grunnet M, Jensen BS, Olesen SP, Klaerke DA (2001) Apamin interacts with all subtypes of cloned small-conductance Ca2+-activated K+ channels. Pflugers Archiv European Journal of Physiology 441:544–550

    Article  PubMed  CAS  Google Scholar 

  33. Linden DJ, Connor JA (1995) Long-term synaptic depression. Annu Rev Neurosci 18:319–357

    Article  PubMed  CAS  Google Scholar 

  34. Weber JT, De Zeeuw CI, Linden DJ, Hansel C (2003) Long-term depression of climbing fiber-evoked calcium transients in Purkinje cell dendrites. Proc Natl Acad Sci USA 100:2878–2883

    Article  PubMed  CAS  Google Scholar 

  35. Coesmans M, Weber JT, De Zeeuw CI, Hansel C (2004) Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44:691–700

    Article  PubMed  CAS  Google Scholar 

  36. Ikeda A, Miyazaki T, Kakizawa S, Okuno Y, Tsuchiya S, Myomoto A et al (2007) Abnormal features in mutant cerebellar Purkinje cells lacking junctophilins. Biochem Biophys Res Commun 363:835–839

    Article  PubMed  CAS  Google Scholar 

  37. Verkhratsky A (2002) The endoplasmic reticulum and neuronal calcium signalling. Cell Calcium 32:393–404

    Article  PubMed  CAS  Google Scholar 

  38. Rose CR, Konnerth A (2001) Stores not just for storage: intracellular calcium release and synaptic plasticity. Neuron 31:519–522

    Article  PubMed  CAS  Google Scholar 

  39. Bardo S, Cavazzini MG, Emptage N (2006) The role of the endoplasmic reticulum Ca2+ store in the plasticity of central neurons. Trends Pharmacol Sci 27:78–84

    Article  PubMed  CAS  Google Scholar 

  40. Finch EA, Augustine GJ (1998) Local calcium signalling by inositol-1,4, 5-trisphosphate in Purkinje cell dendrites. Nature 396:753–756

    Article  PubMed  CAS  Google Scholar 

  41. Takechi H, Eilers J, Konnerth A (1998) A new class of synaptic response involving calcium release in dendritic spines. Nature 396:757–760

    Article  PubMed  CAS  Google Scholar 

  42. Kano M, Garaschuk O, Verkhratsky A, Konnerth A (1995) Ryanodine receptor-mediated intracellular calcium-release in rat cerebellar Purkinje neurons. J Physiol-Lond 487:1–16

    PubMed  CAS  Google Scholar 

  43. Garaschuk O, Yaari Y, Konnerth A (1997) Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J Physiol-Lond 502:13–30

    Article  PubMed  CAS  Google Scholar 

  44. Llano I, Dipolo R, Marty A (1994) Calcium-induced calcium-release in cerebellar Purkinje-cells. Neuron 12:663–673

    Article  PubMed  CAS  Google Scholar 

  45. Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85:201–279

    Article  PubMed  CAS  Google Scholar 

  46. Furuichi T, Furutama D, Hakamata Y, Nakai J, Takeshima H, Mikoshiba K (1994) Multiple types of ryanodine receptor Ca2+ release channels are differentially expressed in rabbit brain. J Neurosci 14:4794–4805

    PubMed  CAS  Google Scholar 

  47. Furuichi T, Simonchazottes D, Fujino I, Yamada N, Hasegawa M, Miyawaki A et al (1993) Widespread expression of inositol 1,4,5-trisphosphate receptor type-1 gene (Insp3r1) in the mouse central-nervous-system. Recept Channels 1:11–24

    PubMed  CAS  Google Scholar 

  48. Inoue T, Kato K, Kohda K, Mikoshiba K (1998) Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J Neurosci 18:5366–5373

    PubMed  CAS  Google Scholar 

  49. Miyata M, Finch EA, Khiroug L, Hashimoto K, Hayasaka S, Oda SI et al (2000) Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28:233–244

    Article  PubMed  CAS  Google Scholar 

  50. Furutani K, Okubo Y, Kakizawa S, Iino M (2006) Postsynaptic inositol 1,4,5-trisphosphate signaling maintains presynaptic function of parallel fiber-Purkinje cell synapses via BDNF. Proc Natl Acad Sci USA 103:8528–8533

    Article  PubMed  CAS  Google Scholar 

  51. Kohda K, Inoue T, Mikoshiba K (1995) Ca2+ release from Ca2+ stores, particularly from ryanodine-sensitive Ca2+ stores, is required for the induction of Ltd in cultured cerebellar Purkinje-cells. J Neurophysiol 74:2184–2188

    PubMed  CAS  Google Scholar 

  52. Iino M (1990) Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth-muscle cells of the guinea-pig taenia ceci. J Gen Physiol 95:1103–1122

    Article  PubMed  CAS  Google Scholar 

  53. Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3-gated and calcium-gated channels from endoplasmic-reticulum of cerebellum. Nature 351:751–754

    Article  PubMed  CAS  Google Scholar 

  54. Wang SSH, Denk W, Hausser M (2000) Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 3:1266–1273

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takeshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakizawa, S., Moriguchi, S., Ikeda, A. et al. Functional Crosstalk Between Cell-Surface and Intracellular Channels Mediated by Junctophilins Essential for Neuronal Functions. Cerebellum 7, 385–391 (2008). https://doi.org/10.1007/s12311-008-0040-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0040-1

Keywords

Navigation