Skip to main content
Log in

Combinatorial impacts of elevated CO2 and temperature affect growth, development, and fruit yield in Capsicum chinense Jacq

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Hot chilli (‘Bhut Jolokia’) (Capsicum chinense Jacq.) is the hottest chilli widely grown in the North-Eastern region of India for its high pungency. However, little information is available on its physiology, growth and developmental parameters including yield. Therefore, the present research was undertaken to study the physiological responses of Bhut Jolokia under elevated CO2 (eCO2) and temperature. Two germplasms from two different agro-climatic zones (Assam and Manipur) within the North-East region of India were collected based on the pungency. The present study explored the interactive effect of eCO2 [at 380, 550, 750 ppm (parts per million)] and temperature (at ambient, > 2 °C above ambient, and > 4 °C above ambient) on various physiological processes, and expression of some photosynthesis and capsaicin related genes in both the germplasms. Results revealed an increase (> 1–2 fold) in the net photosynthetic rate (Pn), carbohydrate content, and C: N ratio in ‘Bhut Jolokia’ under eCO2 and elevated temperature regimes compared to ambient conditions within the germplasms. Gene expression studies revealed an up-regulation of photosynthesis-related genes such as CsRuBPC2 (Ribulose biphosphate carboxylase 2) and CsSPS (Sucrose phosphate synthase) which, explained the higher Pn under eCO2 and temperature conditions. Both the germplasm showed better performance under CTGT-II (Carbon dioxide Temperature Gradient Tunnel having 550 ppm CO2 and temperature of 2 °C above ambient) in terms of various physiological parameters and up-regulation of key photosynthesis-related genes. An up-regulation of the Cs capsaicin synthase gene was also evident in the study, which could be due to the metabolite readjustment in ‘Bhut Jolokia’. In addition, the cultivar from Manipur (cv. 1) had less fruit drop compared to the cultivar from Assam (cv. 2) in CTGT II. The data indicated that 550 ppm of eCO2 and temperature elevation of > 2 °C above the ambient with CTGT-II favored the growth and development of ‘Bhut Jolokia’. Thus, results suggest that Bhut Jolokia grown under the elevation of CO2 up to 550 ppm and temperature above 2 °C than ambient may support the growth, development, and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahammed GJ, Li X (2022) Elevated carbon dioxide-induced regulation of ethylene in plants. Environ Exp Bot 2022:105025

    Article  Google Scholar 

  • Ahammed GJ, Guang Y, Yang Y, Chen J (2021) Mechanisms of elevated CO2-induced thermotolerance in plants: the role of phytohormones. Plant Cell Rep 40(12):2273–2286. https://doi.org/10.1007/s00299-021-02751-z

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A, Blum H et al (2003) Variation in acclimation of photosynthesis in Trifolium repens after eight years of exposure to Free Air CO2 Enrichment (FACE). J Experimental Botany 54(393):2769–2774

    Article  CAS  Google Scholar 

  • Allen JLH, Vu J, Valtte RR, Boote KJ, Jones PH (1988) Non-structural carbohydrates and nitrogen of soybean grown under carbon dioxide enrichment. Crop Sci 28:84–94

    Article  Google Scholar 

  • Aloni B, Karni L, Zaidman Z (1996) Changes of carbohydrates in pepper (Capsicum annuum L.) flowers in relation to their abscission under different shading regimes. Ann Bot 78(2):163–168

    Article  CAS  Google Scholar 

  • Bates S, Waldren RP, Tear ID (1973) Rapid determination of free proline in water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bloom A, Burger M, Kimball BA, Pinter PJ Jr (2014) Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nat Clim Change 4:477–480. https://doi.org/10.1038/nclimate2183

    Article  CAS  Google Scholar 

  • Bosland PW, Baral J (2007) Bhut Jolokia’—The World’s Hottest Known Chile) pepper is a putative naturally occurring interspecific hybrid. Hort Sci 42(2):222–224

    CAS  Google Scholar 

  • Cao P, Sun W, Huang Y et al (2020) Effects of elevated CO2 concentration and nitrogen application levels on the accumulation and translocation of non-structural carbohydrates in Japonica rice. Sustainability 12:5386. https://doi.org/10.3390/su12135386

    Article  CAS  Google Scholar 

  • Chavan SG, Duursman RA, Tausz M (2019) Ghannoum O (2019) Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. J Exp Bot 70(21):6447–6459. https://doi.org/10.1093/jxb/erz386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craufurd PQ, Wheeler TR (2009) Climate change and the flowering time of annual crops. J Exp Bot 60:2529–2539

    Article  CAS  PubMed  Google Scholar 

  • Das R (2020a) Study on growth characteristics of some brassica species under moisture stress and elevated Carbon dioxide. Int J Environ Climate Change 10(12):373–389. https://doi.org/10.9734/ijecc/2020/v10i1230313

    Article  CAS  Google Scholar 

  • Das S, Das R (2021) Genotypic variations in reproductive morphology and anatomy of hot chilli (Capsicum chinense Jacq.). Appl Biolo Res 23(1):60–69. https://doi.org/10.5958/0974-4517.2021.00008.2

    Article  Google Scholar 

  • Das R, Uprety DC (2006) Interactive effect of moisture stress and elevated CO2 on the oxidative stress in Brassica species. J Food Agric Environ 4(2):298–305

    CAS  Google Scholar 

  • Das S, Das R, Choudhury H, Saikia A (2016) Interactive effect of elevated carbon dioxide and temperature on quality of hot chilli (Capsicum chinense Jacq). Int J Trop Agricul 34(7):1977–1981

    Google Scholar 

  • Das S, Das R, Kalita P, Baruah U (2020b) Growth responses of hot chilli (Capsicum chinense Jacq.) to elevated carbondioxide and temperature. J Experiment Biol Agricult Sci 8(4):434–444. https://doi.org/10.18006/2020.8(4).434.440

    Article  CAS  Google Scholar 

  • Dias de Oliveira E, Bramley H, Siddique KHM, Henty S, Berger JD, Palta JA (2013) Can elevated CO2 combined with high temperature ameliorate the effect of terminal drought in wheat? Funct Plant Biol 40:160–171

    Article  CAS  PubMed  Google Scholar 

  • Driesen E, Ende WV, Proft MD, Saeys W (2020) Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development. A Rev Agron 10:1975. https://doi.org/10.3390/agronomy10121975

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC (2005) Enhancing nitrogen use efficiency in crop plants. Adv Agron 88:97–185

    Article  CAS  Google Scholar 

  • Fu J, Huang Z, Wang Z, Yang J, Zhang J (2011) Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res 123:170–182

    Article  Google Scholar 

  • Guinness Book of World Records (2006) Hottest Spice. Available on www.guinnessworldrecords.com, accessed 13 Sept. 2006

  • Habermann E, Dias de Oliveira EA, Contin DR, San Martin JAB, Curtarelli L, Gonzalez-Meler MA, Martinez CA (2019) Stomatal development and conductance of a tropical forage legume are regulated by elevated CO2 under moderate warming. Front Plant Sci 10:609. https://doi.org/10.3389/fpls.2019.00609

    Article  PubMed  PubMed Central  Google Scholar 

  • Han Y, Fan S, Zhang Q (2013) Effect of heat stress on the MDA, proline and soluble sugar content in leaf lettuce seedlings. Agril Sci 4:112–115

    Google Scholar 

  • Hanse J, Ruedy R, Sto M, Lo K (2010) Global surface temperature change. Rev Geophy 48:4004

    Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Huberman M, Riov J, Aloni B, Goren R (1997) Role of ethylene biosynthesis and auxin content and transport in high temperature- induced abscission of pepper reproductive organs. J Plant Growth Reg 16:129–135

    Article  CAS  Google Scholar 

  • Huve K, Bichele I, Ivanova H, Keerberg O, Pärnik T, Rasulov B, Tobias M, Niinemets U (2012) Temperature responses of dark respiration in relation to leaf sugar concentration. Physiol Plant 144(4):320–34. https://doi.org/10.1111/j.1399-3054.2011.01562.x

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) Technical summary. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change (2013) The physical science basis contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kim TL, Chung H, Veerappan K, Lee WY, Park D, Lim H (2021) Physiological and Transcriptome responses to elevated CO2 concentration in populus. Forests 12:980. https://doi.org/10.3390/f12080980

    Article  Google Scholar 

  • Kumari M, Verma SC, Bhardwaj SK (2019) Effect of elevated CO2 and temperature on crop growth and yield attributes of bell pepper (Capsicum annuum L.). J. Agromet. 21(1):1–6

    Article  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Park SJ, Hong SC, Han JH, Choi D, Yoon JB (2016) QTL mapping for capsaicin and dihydrocapsaicin content in a population of Capsicum annuum ‘NB1’ × Capsicum chinense ‘Bhut Jolokia.’ Plant Breed 135(3):376–383

    Article  CAS  Google Scholar 

  • Lee YH, Sang WG, Baek JK et al (2020) The effect of concurrent elevation in CO2 and temperature on the growth, photosynthesis, and yield of potato crops. PLoS ONE 15(10):e0241081. https://doi.org/10.1371/journal.pone.0241081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li PH, Ainsworth EA, Leakey ADB (2008) Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated CO2. Plant Cell Environ. 31: 1673–1687 Seneweera SP, Basra AS, Barlow EW, Conroy JP (1995) Diurna1 regulation of leaf blade elongation in Rice by CO2 1s it related to sucrose-phosphate synthase activity? Plant Physiol 108:1471–1477

    Google Scholar 

  • Li Y, He N, Hou J, Xu L, Liu C, Zhang J, Wang Q, Zhang X, Wu X (2018) Factors Influencing Leaf Chlorophyll Content in Natural Forests at the Biome Scale. Front Ecol Evol 6:64. https://doi.org/10.3389/fevo.2018.00064

    Article  CAS  Google Scholar 

  • Liu C, Luo S, Zhao Y et al (2022) Multiomics analyses reveal high temperature-induced molecular regulation of ascorbic acid and capsaicin biosynthesis in pepper fruits. Environmen Experiment Botany 201:104941

    Article  CAS  Google Scholar 

  • Liu C, Wan H, Yang Y, Ye Q, Zhou G, Wang X, Ahammed GJ, Cheng Y (2022) Post-Harvest LED Light Irradiation Affects Firmness, Bioactive Substances, and Amino Acid Compositions in Chili Pepper (Capsicum annum L.). Foods. 11:2712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makino A, Mae T (1999) Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol 40(10):999–1006

    Article  CAS  Google Scholar 

  • Marcos-Barbero EL, Pérez P, Martínez-Carrasco R, Arellano JB, Morcuende R (2021) Screening for higher grain yield and biomass among sixty bread wheat genotypes grown under elevated CO2 and high-temperature conditions. Plants 10:1596. https://doi.org/10.3390/plants10081596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mardinata Z, Edy ST, Ulpah S (2021) Biochemical responses and leaf gas exchange of fig (Ficus carica L.) to water stress, short-term elevated CO2 levels and brassinolide application. Horticulturae 7:73. https://doi.org/10.3390/horticulturae7040073

    Article  Google Scholar 

  • McCready RM, Gugglog J, Silviera V (1950) Determination of starch and amylase in vegetables. Anal Chem 22:156–158

    Article  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends in Biochem Sci 37:118–125

    Article  CAS  Google Scholar 

  • Moore CE, Katherine M, Pauline L et al (2021) The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J Experiment Botany 72(8):2822–2844. https://doi.org/10.1093/jxb/erab090

    Article  CAS  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22:53–65

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka T, Ito H, Tanaka A (1997) Conversion of Chlorophyll b to Chlorophyll a and the Assembly of Chlorophyll with Apoproteins by isolated chloroplasts. Plant Physiol 113:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Q, Han X, Bai Y, Yang J (2002) Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chin Bull Bot 19:30–38

    Google Scholar 

  • Pan J, Huang D, Guo Z, Kuang Z, Zhang H, Xie X, Ma Z, Gao S, Lerdau M, Chu C, Li L (2018) Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. J Integ Plant Biol 60(4):323–340

    Article  CAS  Google Scholar 

  • Panse VG, Sukhatme PT (1967) Statistical methods for agricultural workers, 2nd edn. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Perdomo JA, Capó-Bauçà S, Carmo-Silva E, Galmés J (2017) Rubisco and Rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water Deficit. Front Plant Sci 8:490. https://doi.org/10.3389/fpls.2017.00490

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad PVV, Craufurd PQ, Kakani VG (2001) Influence of high temperature during pre and post-anthesis stages of floral development on fruit-set and pollen germination in peanut. Funct Plant Biol 28(3):233–240

    Article  Google Scholar 

  • Purcell C, Batke SP, Yiotis C, Caballero SWR, Murray M, McElwain JC (2018) Increasing stomatal conductance in response to rising atmospheric CO2. Ann Bot 121(7):1427. https://doi.org/10.1093/aob/mcy023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qaderi MM, Kurepin LV, Reid DM (2006) Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Plant Physiol 128:710–721

    Article  CAS  Google Scholar 

  • Das R (2021) Effect of Elevated CO2 on Dry Mater Partitioning in Brassica Species Under Moisture Stress Condition Agriways 9(1): 26–32

  • Rojas-Downing MM, Nejadhashemi AP, Harrigan T, Woznicki SA (2017) Climate change and livestock: impacts, adaptation, and mitigation. Clim Risk Manag 16:145–163. https://doi.org/10.1016/j.crm.2017.02.001

    Article  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Brandner SJC (2003) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plantarum 120:179–186

    Article  Google Scholar 

  • Sarker U, Oba S (2018a) Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Sci Rep 8:12349. https://doi.org/10.1038/s41598-018-30897-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarker U, Oba S (2018b) Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content. Food Chem 252:72–83. https://doi.org/10.1016/j.foodchem.2018.01.097

    Article  CAS  PubMed  Google Scholar 

  • Seneweera SP, Basra AS, Barlow EW, Conroy JP (1995) Diurna1 regulation of leaf blade elongation in rice by CO2 1s it related to sucrose-phosphate synthase activity? Plant Physiol 108:1471–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloat LL, Davis SJ, Gerber JS et al (2020) (2020) Climate adaptation by crop migration. Nat Commun 11:1243. https://doi.org/10.1038/s41467-020-15076-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Yu J, Huang B (2014) Elevated CO2-mitigation of high temperature stress associated with maintenance of positive carbon balance and carbohydrate accumulation in Kentucky bluegrass. PLoS ONE 9(3):e89725. https://doi.org/10.1371/journal.pone.0089725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulfat A, Shokat S, Li X et al (2021) Elevated carbon dioxide alleviates the negative impact of drought on wheat by modulating plant metabolism and physiology. Agric Water Manag. https://doi.org/10.1016/j.agwat.2021.106804

    Article  Google Scholar 

  • Van der Kooi CJ, Reichb M, Low M, De Kok LJ, Tausz M (2016) Growth and yield stimulation under elevated CO2 and drought: A meta-analysis on crops Environ. Exp Bot Environ Exp Bot Environ Exp Bot Environ Exp Bot Environ Exp Bot 122:150–157

    Google Scholar 

  • Walkley A, Black CA (1934) An exogenous degtjareff method for determining soil organic matter and a proposed modification of the chromic acid and titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang HM, Bao WK, Li FL (2008) Physiological and biochemical responses of two-years-old Sophora davidii seedling leaves to different water stresses. Chin J Appl Environ Biol 14(6):757–762

    CAS  Google Scholar 

  • Warren JM, Jensen AM, Medlyn BE, Norby RJ, Tissue DT (2014) Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment. AoB Plants 5:1–13

    Google Scholar 

  • Wen X, Gong H, Lu C (2005) Heat stress induces a reversible inhibition of electron transport at the acceptor side of photosystem II in a cyanobacterium Spirulina platensis. Plant Sci 168:1471–1476

    Article  CAS  Google Scholar 

  • Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated CO2 – implications for water-limited environments. Plant, Cell Environ 25:319–331

    Article  PubMed  Google Scholar 

  • Yoshinaga S, Tokida T, Usui Y et al (2020) Analysis of factors related to varietal differences in the yield of rice (Oryza sativa L.) under Free-Air CO2 Enrichment (FACE) conditions. Plant Prod Sci 23:19–27

    Article  CAS  Google Scholar 

  • Yuan L, Yuan Y, Liu S et al (2017) (2017) Influence of high temperature on photosynthesis, antioxidative capacity of chloroplast, and carbon assimilation among heat-tolerant and heat-susceptible genotypes of nonheading chinese cabbage. HortScience 52:1464–1470

    Article  CAS  Google Scholar 

  • Zhang H, Pan C, Gu S, Ma Q, Zhang Y, Li X (2019) Shi K (2019) Stomatal movements are involved in elevated CO2 -mitigated high temperature stress in tomato. Physiol Plant 165(3):569–583. https://doi.org/10.1111/ppl.12752

    Article  CAS  PubMed  Google Scholar 

  • Zhu P, Zhuang Q, Ciais P, Welp L, Li W, Xin Q (2017) Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology mediated climate feedback. Geophy Res Lett 44:1956–1963

    CAS  Google Scholar 

  • Zhuo X, Misaghi IJ, Hawes MC (2000) Stimulation of border cell production in response to increased carbon dioxide level. Plant Physiol 122:181–188

    Article  Google Scholar 

  • Zinta G, Abdelgawad H, Peshev D, Weedon JT, Van Den Ende W, Nijs I (2018) Dynamics of metabolic responses to periods of combined heat and drought in Arabidopsis thaliana under ambient and elevated atmospheric CO2. J Exp Bot 69:2159–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Directorate of Post Graduate Studies (DPGS), Assam Agricultural University, Jorhat, Assam, India, and Technology Mission (MM-I) for providing financial support in conducting this Ph D. research work of SD. We are also grateful to the National Initiative on Climate Resilient Agriculture (NICRA) Project for providing the Carbon dioxide Temperature Gradient Tunnel facility which was required for experimentation.

Funding

This work was supported by DPGS, AAU, JORHAT and National Initiative on Climate Resilient Agriculture (NICRA) Project provided the Carbon dioxide Temperature Gradient Tunnel facility which was required for experimentation.

Author information

Authors and Affiliations

Authors

Contributions

SD performed experiments and analyzed data with the guidance from RD. SA helped to do semi quantative RT-PCR in her laboratory. SD and SA co-wrote the manuscript. RD obtained grants for this research work. SK, SP, PK and AJN wrote and reviewed the manuscript.

Corresponding author

Correspondence to Ranjan Das.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 26290 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Kalita, P., Acharjee, S. et al. Combinatorial impacts of elevated CO2 and temperature affect growth, development, and fruit yield in Capsicum chinense Jacq. Physiol Mol Biol Plants 29, 393–407 (2023). https://doi.org/10.1007/s12298-023-01294-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-023-01294-9

Keywords

Navigation