Skip to main content
Log in

Chlorophyll fluorometry in evaluating photosynthetic performance: key limitations, possibilities, perspectives and alternatives

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Non-destructive methods for the assessment of photosynthetic parameters of plants are widely applied to evaluate rapidly the photosynthetic performance, plant health, and shifts in plant productivity induced by environmental and cultivation conditions. Most of these methods are based on measurements of chlorophyll fluorescence kinetics, particularly on pulse modulation (PAM) fluorometry. In this paper, fluorescence methods are critically discussed in regard to some their possibilities and limitations inherent to vascular plants and microalgae. Attention is paid to the potential errors related to the underestimation of thylakoidal cyclic electron transport and anoxygenic photosynthesis. PAM-methods are also observed considering the color-addressed measurements. Photoacoustic methods are discussed as an alternative and supplement to fluorometry. Novel Fourier modifications of PAM-fluorometry and photoacoustics are noted as tools allowing simultaneous application of a dual or multi frequency measuring light for one sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  Google Scholar 

  • Baránková B, Lazár NJ (2016) Analysis of the effect of chloroplast arrangement on optical properties of green tobacco leaves. Remote Sens Environ 174:181–196

    Article  Google Scholar 

  • Bęś A, Warmiński K, Adomas B (2019) Long-term responses of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) to the contamination of light soils with diesel oil. Environ Sci Pollut R 26:10587–10608

    Article  Google Scholar 

  • Blankenship RE (2021) The use of chlorophyll fluorescence to probe photosynthesis. Chapter 11. In: Molecular mechanisms of photosynthesis. Third edition. ISBN: 978–1–119–80011–8 July 2021. Wiley, p. 207–214

  • Bults G, Horwitz BA, Malkin S, Cahen D (1982) Photoacoustic measurements of photosynthetic activities in whole leaves—Photochemistry and gas exchange. Biochim Biophys Acta 679:452–465

    Article  CAS  Google Scholar 

  • Buonasera K, Lambreva M, Rea G, Touloupakis E, Giardi MT (2011) Technological applications of chlorophyll a fluorescence for the assessment of environmental pollutants. Anal Bioanal Chem 401:1139–1151

    Article  CAS  Google Scholar 

  • Buschmann C (1999) Thermal dissipation related to chloophyll fluorescence and photosynthesis. Bulg J Plant Physiol 25:77–88

    CAS  Google Scholar 

  • Buser CA, Dinerand BA, Brudvig CW (1992) Photooxidation of cytochrome b559 in oxygen-evolving photosystem II. Biochemistry-US 31:11449–11459

    Article  CAS  Google Scholar 

  • Camargo EC, Rossi RA, Silva JC, Miwa ACP, Prášil O, Calijuri MC, Lombardi AT (2022) Comparing pulse amplitude modulated (PAM) fluorometry with radiocarbon technique for determination of inorganic carbon fixation in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta). Eur J Phycol 57:18–28

    Article  CAS  Google Scholar 

  • Canaani O, Malkin S, Mauzerall D (1988) Pulsed photoacoustic detection of flash-induced oxygen evolution from intact leaves and its oscillations. Proc Natl Acad Sci USA 85:4725–4729

    Article  CAS  Google Scholar 

  • Chauhan DS, Goswami G, Dineshbabu G, Palabhanvi B, Das D (2020) Evaluation and optimization of feedstock quality for direct conversion of microalga Chlorella sp. FC2 IITG into biodiesel via supercritical methanol transesterification. Biomass Conv Bioref 10:339–349

    Article  CAS  Google Scholar 

  • Chen M, Yin G, Zhao N, Gan T, Feng C, Gu M, Qi P, Ding Z (2021) Rapid and sensitive detection of water toxicity based onphotosynthetic inhibition effect. Toxics 9:321

    Article  CAS  Google Scholar 

  • Clarke JE, Johnson GN (2001) In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley. Planta 212:808–816

    Article  CAS  Google Scholar 

  • Cosgrove J, Borowitzka MA (2010) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Netherlands, pp 1–17

    Google Scholar 

  • Czaplicka-Kotas A, Lodowska J (2014) Biomonitoring of surface water by synchronous culture of Chlorella vulgaris algae. Environ Protect Eng 40:29–40

    Article  Google Scholar 

  • Davis LOMM, Hidayati N (2020) Carbon dioxide absorption and physiological characteristics of selected tropical lowland tree species for revegetation. IOP Conf Ser Earth Environ Sci 591:012039

    Article  Google Scholar 

  • Delosme R (2003) On some aspects of photosynthesis revealed by photoacoustic studies: a critical evaluation. Photosynt Res 76:289–301

    Article  CAS  Google Scholar 

  • Dmitriev PA, Kozlovsky BL, Kupriushkin DP, Lysenko VS, Rajput VD et al (2022) Identification of species of the genus Acer L. using vegetation indices calculated from the hyperspectral images of leaves. Rem Sens Appl Soc Environ 25:100679

    Google Scholar 

  • Evans JR, Vogelman TC (2003) Profiles of 14C fixation through spinach leaves in relation to light absorption and photosynthetic capacity. Plant Cell Environ 26:547–560

    Article  CAS  Google Scholar 

  • Falkowski PG, Fujita Y, Ley A, Mauzerall D (1986) Evidence for cyclic electron flow around photosystem II in Chlorella pyrenoidosa. Plant Physiol 81:310–312

    Article  CAS  Google Scholar 

  • Falkowski PG, Greene RM, Gelder RJ (1992) Physiological limitations on phytoplankton productivity in the ocean. Oceanography 5:84–91

    Article  Google Scholar 

  • Feikema WO, Marosvölgyi MA, Lavaud J, van Gorkom HJ (2006) Cyclic electron transfer in photosystem II in the marine diatom Phaeodactylum tricornutum. BBA Bioenerg 1757:829–834

    Article  CAS  Google Scholar 

  • Figueroa FL, Jerez C, Korbee N (2013) Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Lat Am J Aquat Res 41:801–819

    Article  Google Scholar 

  • Frandas A, Jalink H, van der Schoor R (1997) Low frequency photoacoustics for monitoring the photobaric component in vivo of green leaves. Photosynth Res 52:65–67

    Article  CAS  Google Scholar 

  • Fu C, Yi Xu, Chuanbo G, Norm O, Grüss A, Huizhu L, Nicolas B, Philippe V, Shin Y-J (2020) Cumulative effects of fishing, plankton productivity, and marine mammal consumption in a marine ecosystem. Front Mar Sci 7:565699

    Article  Google Scholar 

  • Gao S, Liu X, Liu Y, Cao B, Chen Z, Xu K (2020) Photosynthetic characteristics and chloroplast ultrastructure of welsh onion (Allium fistulosum L.) grown under different LED wavelengths. BMC Plant Biol 20:78

    Article  CAS  Google Scholar 

  • Gilbert M, Domin A, Becker A (2000) Wilhelm C (1980) Estimation of primary productivity by chlorophyll a in vivo fluorescence in freshwater phytoplankton. Photosynthetica 38:111–126

    Article  CAS  Google Scholar 

  • González-Rodríguez AMG, Brito P, Lorenzo JR, Jiménez MS (2019) Photosynthetic performance in Pinus canariensis at semiarid treeline: phenotype variability to cope with stressful environment. Forests 10:845

    Article  Google Scholar 

  • Gordillo-Delgado F, Botero-Zuluaga M (2020) Photoacoustic evaluation of Musa acuminata plants (Musaceae) infected with the fungus Fusarium oxysporum (Nectriaceae). Rev Acad Colomb Cienc Exact Fis Nat 44:1073–1082

    Article  Google Scholar 

  • Govindjee G (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govinjee G (eds) Chlorophyll fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 1–41

    Google Scholar 

  • Gu W, Huan Li YuR, Pan G, Wang G (2015) Enhancement of cytochrome b559 indicates its possible involvement in long-term high light stress tolerance in intertidal macroalgae. Plant Mol Biol Rep 33:1918–1927

    Article  CAS  Google Scholar 

  • Guo Z, Wang F, Xiang X et al (2016) Systemic induction of photosynthesis via illumination of the shoot apex is mediated sequentially by Phytochrome B, auxin and hydrogen peroxide in tomato. Plant Physiol 172:1259–1272

    CAS  Google Scholar 

  • Hamilton M, Franco E, Deak Z, Schlodder E, Vass I, Nixon PJ (2014) Investigating the photoprotective role of cytochrome b559 in photosystem II in a mutant with altered ligation of the haem. Plant Cell Physiol 55:1276–1285

    Article  CAS  Google Scholar 

  • Havaux M (1998) Probing electron transport through and around photosystem II in vivo by the combined use of photoacoustic spectroscopy and chlorophyll fluorometry. Isr J Chem 38:247–256

    Article  CAS  Google Scholar 

  • Havlik I, Beutel S, Scheper T, Reardon KF (2022) On-line monitoring of biological parameters in microalgal bioprocesses using optical methods. Energies 15:875

    Article  CAS  Google Scholar 

  • Hidayanto E (2020) Photoacoustic spectroscopy and its applications in biology, radiotherapy, and imaging - a brief overview. Int J Sci Res 9:855–858

    Google Scholar 

  • Hou HJM, Mauzerall D (2011) Listening to PS II: enthalpy, entropy, and volume changes. J Photochem Photobiol b, Biol 104:357–365

    Article  CAS  Google Scholar 

  • Hou HJ, Sakmar TP (2010) Methodology of pulsed photoacoustics and its application to probe photosystems and receptors. Sensors 10:5642–5667

    Article  CAS  Google Scholar 

  • Houborg R, Fisher J, Skidmore A (2015) Advances in remote sensing of vegetation function and traits. Int J Appl Earth Observ Geoinform 43:1–6

    Article  Google Scholar 

  • Hughes DJ, Campbell DA, Doblin MA, Kromkamp JC, Lawrenz E, Moore CM, Oxborough K, Prášil O, Ralph PJ, Alvarez MF, Suggett DJ (2018) Roadmaps and Detours: active chlorophyll-a assessments of primary productivity across marine and freshwater systems. Environ Sci Technol 52:12039–12054

    Article  CAS  Google Scholar 

  • Ibaraki Y, Murakami J (2007) Distribution of chlorophyll fluorescence parameter Fv/Fm within individual plants under various stress conditions. Acta Hort 761:255–260

    Article  Google Scholar 

  • Inada K (1976) Action spectra for photosynthesis in higher plants. Plant Cell Physiol 17:355–365

    Google Scholar 

  • Ivanov B, Kobayashi Y, Bukhov NG, Heber U (1998) Photosystem I-dependent cyclic electron flow in intact spinach chloroplasts: occurrence, dependence on redox conditions and electron acceptors and inhibition by antimycin A. Photosynt Res 857:61–70

    Article  Google Scholar 

  • Joët T, Cournac L, Peltier G, Havaux M (2002) Cyclic electron flow around photosystem I in C3 plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex. Plant Physiol 128:760–769

    Article  Google Scholar 

  • Kalaji HM, Schansker G, Brestic M, Bussotti F, Calatayud A, Ferroni L et al (2017) Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth Res 132:13–66

    Article  CAS  Google Scholar 

  • Kaplan A, Björkman O (1980) Ratio of CO2 uptake to O2 evolution during photosynthesis in higher plants. Z Pflanzenphysiol 96:185–188

    Article  CAS  Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensaureassimilation. Naturwissenschaften 136:964

    Article  Google Scholar 

  • Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y (2006) Tradeoff between shade adaptation and mitigation of photoinhibition in leaves of Quercus mongolica and Acer mono acclimated to deep shade. Tree Physiol 26:441–448

    Article  CAS  Google Scholar 

  • Kolber ZS, Prášil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–106

    Article  CAS  Google Scholar 

  • Kou J, Takahashi S, Oguchi R, Fan DY, Badger MR, Chow WS (2013) Estimation of the steady-state cyclic electron flux around PSI in spinach leaf discs in white light, CO2-enriched air and other varied conditions. Funct Plant Biol 40:1018–1028

    Article  CAS  Google Scholar 

  • Kou J, Takahashi S, Fan DY, Badger MR, Chow WS (2015) Partially dissecting the steady-state electron fluxes in Photosystem I in wild-type and pgr5 and ndh mutants of Arabidopsis. Front Plant Sci 6:758

    Article  Google Scholar 

  • Kozuleva MA, Ivanov BN, Vetoshkina DV, Borisova-Mubarakshina MM (2020) Minimizing an electron flow to molecular oxygen in photosynthetic electron transfer chain: an evolutionary view. Front Plant Sci 11:211

    Article  Google Scholar 

  • Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70–78

    Article  CAS  Google Scholar 

  • Krause GH, Jahns P (2004) Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: characterization and function. In: Papageorgiou GC, Govinjee G (eds) Chlorophyll fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 713–736

    Google Scholar 

  • Kromkamp J, Capuzzo E, Philippart CJM (2017) Measuring phytoplankton primary production: review of existing methodologies and suggestions for a common approach. As a contribution to the EU Co-financed EcApRHA project (Applying an ecosystem approach to (sub) regional habitat assessments), deliverable No. 3.2.

  • Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112

    Article  Google Scholar 

  • Lavaud J, van Gorkom HJ, Etienne A-L (2002) Photosystem II electron transfer cycle and chlororespiration in planktonic diatoms. Photosynth Res 74:51–59

    Article  CAS  Google Scholar 

  • Lawrenz E, Silsbe G, Capuzzo E, Ylöstalo P, Forster RM, Simis SGH, Prášil O, Kromkamp JC, Hickman AE, Moore CM, Forget MH, Suggett GRJ, DJ, (2013) Predicting the electron requirement for carbon fixation in seas and oceans. PLoS ONE 8:e58137

    Article  CAS  Google Scholar 

  • Leupold D, Teuchner K, Ehlert J, Irrgang K-D, Renger G, Lokstein H (2022) Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes: a new approach to detect strong excitonic chlorophyll a/b coupling. Biophys J 82:1580–1585

    Article  Google Scholar 

  • Lichtenthaler HК (2021) Multi-colour fluorescence imaging of photosynthetic activity and plant stress. Photosynthetica 59:364–380

    Article  CAS  Google Scholar 

  • Lichtenthaler HК, Babani К, Langsdorf G (2007) Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. Photosynth Res 93:235–244

    Article  CAS  Google Scholar 

  • Liu J, van Iersel MW (2021) Photosynthetic physiology of blue, green, and red light: light intensity effects and underlying mechanisms. Front Plant Sci 12:619987

    Article  Google Scholar 

  • Long SP, Hällgren JE (1993) Measurement of CO2 assimilation by plants in the field and the laboratory. In: Hall D, Scurlock JMO, Bolhàr-Nordenkampf HR, Leegood RC, Long SP (eds) Photosynthesis and production in a changing environment. Springer, Dordrecht, pp 129–167

    Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Article  CAS  Google Scholar 

  • Lysenko V (2012) Fluorescence kinetic parameters and cyclic electron transport in guard cell chloroplasts of chlorophyll-deficient leaf tissues from variegated weeping fig (Ficus benjamina L.). Planta 235:1023–1033

    Article  CAS  Google Scholar 

  • Lysenko V, Varduny T (2022) High levels of anoxygenic photosynthesis revealed by dual-frequency Fourier photoacoustics in Ailanthus altissima leaves. Funct Plant Biol 49:573–586

    Article  CAS  Google Scholar 

  • Lysenko V, Guo Y, Chugueva O (2017) Cyclic electron transport around photosystem II: mechanisms and methods of study. Amer J Plant Physiol 12:1–9

    Article  CAS  Google Scholar 

  • Lysenko V, Lazar D, Varduny T (2018) A method of a bicolor fast-Fourier pulse-amplitude modulation chlorophyll fluorometry. Photosynthetica 56:1447–1452

    Article  CAS  Google Scholar 

  • Lysenko V, Guo Y, Kosolapov A, Usova E, Varduny T, Krasnov V (2020) Polychromatic Fourier-PAM fluorometry and hyperspectral analysis of chlorophyll fluorescence from Phaseolus vulgaris leaves: effects of green light. Inf Proc Agricult 7:204–211

    Google Scholar 

  • Macnicol PK, Dudziński ML, Condon BN (1976) Estimation of chlorophyll in tobacco leaves by direct photometry. Ann Bot 40:143–152

    Article  CAS  Google Scholar 

  • Malkin S (1996) The photoacoustic method in photosynthesis – monitoring and analysis of phenomena which lead to pressure changes following light excitation. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis. Kluwer Academic Publishers, Amsterdam

    Google Scholar 

  • Malkin S (1998) Attenuation of the photobaric-photoacoustic signal in leaves by oxygen-consuming processes. Isr J Chem 38:261–268

    Article  CAS  Google Scholar 

  • Malkin S, Canaani O (1994) The use and characteristics of the photoacoustic method in the study of photosynthesis. Annu Rev Plant Phys 45:493–526

    Article  CAS  Google Scholar 

  • Marra JF, Barber RT, Barber E, Bidigare RR, Chamberlin WS, Goericke R et al (2021) A database of ocean primary productivity from the 14C method. Limnol Oceanog Lett 6:107–111

    Article  Google Scholar 

  • Mashkina EV, Usatov AV, Danilenko VA, Kolokolova NS, Gus’kov EP, (2006) Responses of sunflower chlorophyll mutants to increased temperature and oxidative burst. Russ J Plant Physiol 53:205–210

    Article  CAS  Google Scholar 

  • Mattei F, Buonocore E, Franzese PP, Scardi M (2021) Global assessment of marine phytoplankton primary production: integrating machine learning and environmental accounting models. Ecol Model 451:109578

    Article  Google Scholar 

  • Mesquita RC, Mansanares AM, da Silva EC, Barja PR, Miranda LCM, Vargas H (2006) Open photoacoustic cell: applications in plant photosynthesis studies. Instrum Sci Technol 34:33–58

    Article  CAS  Google Scholar 

  • Miyazawa Y, Yahata H (2006) Is the parameter electron transport rate useful as a predictor of photosynthetic carbon assimilation rate? Bull Inst Trop Agr Kyushu Univ 29:39–53

    Google Scholar 

  • Moisan T, Mitchell B (1999) Photophysiological acclimation of Phaeocystis antarctica Karsten under light limitation. Limnol Oceanog 44:247–258

    Article  Google Scholar 

  • Moore CM, Suggett D, Holligan PM, Sharples J, Abraham JE et al (2003) Physical controls on phytoplankton physiology and production at a shelf sea front: a fast repetition-rate fluorometer based field study. Mar Ecol Prog Ser 259:29–45

    Article  CAS  Google Scholar 

  • Moss DA, Bendall DS (1984) Cyclic electron transport in chloroplasts. The Q-cycle and the site of action of antimycin. Biochim Biophys Acta 767:389–395

    Article  CAS  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    Article  CAS  Google Scholar 

  • Narina SS, Phatak SC, Bhardwaj HL (2014) Chlorophyll fluorescence to evaluate pigeonpea breeding lines and mungbean for drought tolerance. J Agr Sci 6:238–246

    Google Scholar 

  • Nemeskéri E, Neményi A, Bőcs A, Zoltán Pék Z, Helyes L (2019) Physiological factors and their relationship with the productivity of processing tomato under different water supplies. Water 11:586

    Article  Google Scholar 

  • Nickelsen К (2010) Of light and darkness: modelling photosynthesis 1840–1960. Habilitation thesis Bern: Faculty of Sciences of the University of Bern.

  • Pal A, Singh S, Atta K, Gaikwad D, Monda K (2020) Cyanofix: cyanobacterial nitrogen fixation. Agricult Obser 1:53–56

    Google Scholar 

  • Perkins RG, Oxborough K, Hanlon ARM, Underwood GJ, Baker NR (2002) Can chlorophyll fluorescence be used to estimate the rate of photosynthetic electron transport within microphytobenthic biofilms? Mar Ecol Prog Ser 228:47–56

    Article  CAS  Google Scholar 

  • Pettai H, Oja V, Freiberg A, Laisk A (2005) Photosynthetic activity of far-red light in green plants. Biochim Biophys Acta 1708:311–321

    Article  CAS  Google Scholar 

  • Pfündel EE (2009) Deriving room temperature excitation spectra for photosystem I and photosystem II fluorescence in intact leaves from the dependence of FV/FM on excitation wavelength. Photosynth Res 100:163–177

    Article  Google Scholar 

  • Pfündel EE, Latuche G, Meister A, Cerovic ZG (2018) Linking chloroplast relocation to different responses of photosynthesis to blue and red radiation in low and high light-acclimated leaves of Arabidopsis thaliana. Photosynth Res 137:105–128

    Article  Google Scholar 

  • Pinchasov-Grinblat Y, Dubinsky Z (2013) Photoacoustics—a novel tool for the study of aquatic photosynthesis. Chapter 11. In: Dubinsky Z (ed) Photosynthesis. IntechOpen, London, pp 285–296

    Google Scholar 

  • Porcar-Castell A, Tyystjärvi E, Atherton J, van der Tol C, Flexas J, Pfündel EE, Moreno J, Frankenberg C, Berry JA (2014) Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J Exp Bot 65:4065–4095

    Article  CAS  Google Scholar 

  • Pospíšil P (2011) Enzymatic function of cytochrome b559 in photosystem II. J Photochem Photobiol B: Biol 104:341–347

    Article  Google Scholar 

  • Prasil O, Kolber Z, Berry JA, Falkowski PG (1996) Cyclic electron flow around photosystem II in vivo. Photosynth Res 48:395–410

    Article  CAS  Google Scholar 

  • Quay PD, Peacock C, Björkman K, Kar DM (2010) Measuring primary production rates in the ocean: enigmatic results between incubation and non-incubation methods at Station ALOHA. Glob Biogeochem Cycles 24:GB3014

    Article  Google Scholar 

  • Raji AA, Jimoh WA, Bakar NHA, Taufek NHM, Muin H, Alias Z, Milow H, Razak SA (2020) Dietary use of Spirulina (Arthrospira) and Chlorella instead of fish meal on growth and digestibility of nutrients, amino acids and fatty acids by African catfish. J Appl Phycol 32:1763–1770

    Article  CAS  Google Scholar 

  • Rochaix JD (2011) Regulation of photosynthetic electron transport. BBA Bioenerg 1807:375–383

    Article  CAS  Google Scholar 

  • Ru ITK, Sung YY, Jusoh M, Wahid MEA, Nagappan T (2020) Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Appl Phycol 1:2–11

    Article  Google Scholar 

  • Rühle T, Reiter B, Leister D (2018) Chlorophyll fluorescence video imaging: a versatile tool for identifying factors related to photosynthesis. Front Plant Sci 9:55

    Article  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    Article  CAS  Google Scholar 

  • Santabarbara S, Remell W, Petrova AA, Casazza AP (2020) Influence of the wavelength of excitation and fluorescence emission detection on the estimation of fluorescence-based physiological parameters in different classes of photosynthetic organisms. Chapter 3. In: Grigoryeva N (ed) Fluorescence methods for investigation of living cells and microorganisms. IntechOpen, London, pp 55–82

    Google Scholar 

  • Schofield O, Prézelin B, Johnsen G (1996) Wavelength dependency of the maximum quantum yield of carbon fixation for two red tide dinoflagellates, Heterocapsa pygmaea and Prorocentrum minimum (Pyrrophyta): implications for measuring photosynthetic rates. J Phycol 32:574–583

    Article  CAS  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude (PAM) fluorometry and saturation pulse method. In: Papageorgiou GC, Govindjee G (eds) Chlorophyll fluorescence: a signature of photosynthesis. Kluwer, Dordrecht, pp 279–319

    Chapter  Google Scholar 

  • Schreiber U, Klughammer C (2013) Wavelength-dependent photodamage to Chlorella investigated with a new type of multicolor PAM chlorophyll fluorometer. Photosynth Res 114:165–177

    Article  CAS  Google Scholar 

  • Schreiber U, Klughammer C, Kolbowski J (2012) Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth Res 113:127–144

    Article  CAS  Google Scholar 

  • Schuback N, Tortell FD, Berman-Frank I, Campbell DA, Ciotti A, Courtecuisse E, Erickson Z-K et al (2021) Single-turnover variable chlorophyll fluorescence as a tool for assessing phytoplankton photosynthesis and primary productivity: opportunities, caveats and recommendations. Front Mar Sci. https://doi.org/10.3389/fmars.2021.690607

    Article  Google Scholar 

  • Sezginer Y, Suggett DJ, Izett RW, Tortell PD (2021) Irradiance and nutrient-dependent effects on photosynthetic electron transport in Arctic phytoplankton: Acomparison of two chlorophyllf luorescence-based approaches to derive primary photochemistry. PLoSONE 16:e0256410

    Article  CAS  Google Scholar 

  • Shinopoulos KE, Brudvig GW (2012) Cytochrome b559 and cyclic electron transfer within photosystem II. Biochim Biophys Acta 1817:66–75

    Article  CAS  Google Scholar 

  • Simkin AJ, López-Calcagno PE, Raines CA (2019) Feeding the world: improving photosynthetic efficiency for sustainable crop production. J Exp Bot 70:1119–1140

    Article  CAS  Google Scholar 

  • Sinclair J, Sarai A, Garland S (1979) A backflow of electrons around photosystem II in Chlorella cells. BBA Bioenerg 546:256–269

    Article  CAS  Google Scholar 

  • Sipka G, Magyar M, Mezzetti A, Akhtar P, Zhu Q, Xiao Y, Han G, Santabarbara S, Shen J-R, Lambrev PH, Garab G (2021) Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. Plant Cell 33:1286–1302

    Article  Google Scholar 

  • Slot M, Krause GH, Krause B, Hernández GG, Winter K (2019) Photosynthetic heat tolerance of shade and sun leaves of three tropical tree species. Photosynth Res 141:119–130

    Article  CAS  Google Scholar 

  • Smith HL, McAusland L, Murchie EH (2017) Don’t ignore the green light: exploring diverse roles in plant processes. J Exp Bot 68:2099–2110

    Article  CAS  Google Scholar 

  • Špulák O, Martincová J (2015) The influence of the method of silver fir growing and nutrition on sprouting and chlorophyll fluorescence during spring. J Forest Sci 61:80–88

    Google Scholar 

  • Szabó M, Wangpraseurt D, Tamburic B, Larkum AWD, Schreiber U, Suggett DJ, Kühl M, Ralph PJ (2014) Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis. Plant Physiol Biochem 83:159–167

    Article  Google Scholar 

  • Takagi D, Ifuku K, Nishimura T, Miyake C (2019) Antimycin A inhibits cytochrome b559-mediated cyclic electron flow within photosystem II. Photosynth Res 139:487–498

    Article  CAS  Google Scholar 

  • Thapper A, Mamedov F, Mokvist F, Hammarström L, Styring S (2009) Defining the far-red limit of photosystem II in spinach. Plant Cell 21:2391–2401

    Article  CAS  Google Scholar 

  • Uhrin P, Supuka J, Billiková M (2018) Growth adaptability of Norway maple (Acer platanoides L.) to urban environment. Folia Oecol 45:33–45

    Article  Google Scholar 

  • Vasechkina E (2020) Object-based modeling of marine phytoplanktonand seaweeds. J Mar Sci Eng 8:685

    Article  Google Scholar 

  • Veljović-Jovanović S, Vidović M, Morina F, Prokić L, Todorović DM (2016) Comparison of photoacoustic signals in photosynthetic and nonphotosynthetic leaf tissues of variegated Pelargonium zonale. Int J Thermophys 37:91

    Article  Google Scholar 

  • Walter J, Kromdijk J (2022) Here comes the sun: How optimization of photosynthetic light reactions can boost crop yields. J Integr Plant Biol 64:564–591

    CAS  Google Scholar 

  • Yu X, Liu H, Klejnot J, Lin C (2010) The cryptochrome blue light receptors. Arabidopsis Book 8:e0135

    Article  Google Scholar 

  • Zavafer A, Labeeuw L, Mancilla C (2020) Global trends of usage of chlorophyll fluorescence and projections for the next decade. Plant Phenom 2020:6293145

    Article  CAS  Google Scholar 

  • Zhen S, Bugbee B (2020) Far-red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation. Plant Cell Environ 43:1259–1272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the Russian Science Foundation under grant No. 22-14-00338, https://rscf.ru/project/22-14-00338/, and performed in Southern Federal University (Rostov-on-Don, Russian Federation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Lysenko.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, V., D. Rajput, V., Kumar Singh, R. et al. Chlorophyll fluorometry in evaluating photosynthetic performance: key limitations, possibilities, perspectives and alternatives. Physiol Mol Biol Plants 28, 2041–2056 (2022). https://doi.org/10.1007/s12298-022-01263-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-022-01263-8

Keywords

Navigation