Skip to main content
Log in

Identification and characterization of drought-tolerant local pigmented rice from Indonesia

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Water is essential to support life. Because limited water availability may affect their life cycles, plants have developed multiple responses to drought stress. Plant physiological and metabolic changes during drought may reflect changes that occur at the level of gene expression. In this study, we investigated the variation in drought-mitigating strategies employed by pigmented rice (Oryza sativa) varieties and the genes involved in their possible drought tolerance. We screened 21 local pigmented rice cultivars from Indonesia for increased drought tolerance using the fraction transpirable soil water method to exert precise control of the drought stress imposed on plants. We then determined the expression of OsDREB1A, OsNAC6, OsNHX1, OsCuZnSOD2, OsOSCAT2, and OsCAT3 in plants grown under well-watered conditions and under moderate or severe drought stress. Among the pigmented rice cultivars, Merah Pari Eja had the greatest drought tolerance, while the red rice Inpari 24 had the highest mortality rate (60%). We also included the white rice cultivar Putih Payo, which is fully sensitive to drought (with 100% mortality under the conditions used) as a negative control. Gene expression profiling revealed a general upregulation of drought-related genes in Merah Pari Eja and a downregulation of such genes in the other two cultivars. Measurements of antioxidant enzyme activity, leaf damage, free radicals, chlorophyll, and anthocyanin contents provided further evidence that Merah Pari Eja is more drought tolerant than the other two cultivars. We conclude that OsDREB1A, OsNAC6, OsNHX1, OsCuZnSOD2, OsOSCAT2 and OsCAT3 expression patterns can reveal plants that have increased drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Anjum F, Yaseen M, Rasul E, Wahid A, Anjum S (2003) Water stress in barley (Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents. Pak J Agric Sci 40:45–49

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplast: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bergmeyer N (1970) Methoden der enzymatischen Analyse, vol 1. Akademie-Verlag, Berlin, pp 636–647

    Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Reddy SD, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of DREB1A in transgenic peanut (Arachis hypogea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082

    Article  CAS  PubMed  Google Scholar 

  • Bouazizi H, Jouili H, Ferjani E (2007) Effects of Copper Excess on Growth, H2O2 Production and Peroxidase Activities in Maize Seedlings (Zea mays L.). Pak J Biol Sci PJBS 10:751–756

    Article  CAS  PubMed  Google Scholar 

  • Chang TT, Loresto GC, Tagumpay O (1974) Screening of rice germplasm for drought resistant. SABRAO J Breed Genet 6:9–16

    Google Scholar 

  • Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG (2003) OsDREB genes in rice, Oryza sativa encode transcription activators that function in drought, highsalt and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Eisa K, Najjar B, Mohammad B (2011) DRE-binding Transcription factor (DREB1A) as a master regulator induced a broad range of abiotic stress tolerance in plant. Afr J Biotechnol 10(67):15100–15108

    Google Scholar 

  • Fabregas N, Fernie AR (2018) The metabolic response to drought. J Exp Bot 70:1077–1085

    Article  CAS  Google Scholar 

  • Foyer CH (2018) Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot 154:134–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George S, Aswathi KPR, Puthur JT (2022) Photosynthetic functions in plants subjected to stresses are positively influenced by priming. Plant Stress 4(1):1–12

    Google Scholar 

  • Guo Z, Ou W, Lu S, Zhong Q (2006) Differential response antioxidative system to chilling and drought in rice cultivars differing in sensitivity. Plant Physiol Biochem 43:828–836

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan M, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Article  CAS  PubMed Central  Google Scholar 

  • Herald TJ, Gadgil P, Tilley M (2012) High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J Sci Food Agric 92(11):2326–2331

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Xie K, Yao J, Qi Z, Xiong L (2009) A homolog of human skiinteracting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci USA 106:6410–6415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, LiZhang XQ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103(35):12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffar MA, Song A, Faheem M, Chen S, Jiang J, Liu C (2016) Involvement of CmWRKY10 in drought tolerance of chrysanthemum through the ABA-signaling pathway. Int J Mol Sci 17:693

    Article  PubMed Central  CAS  Google Scholar 

  • Ji KX, Wang YY, Sun WN, Lou QJ, Mei HW, Shen SH, Chen H (2012) Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. J Plant Physiol 169:336–344

    Article  CAS  PubMed  Google Scholar 

  • Kar ME, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57:315–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodabin G, Sarvestani ZT, Rad AHS, Sanavy SAMM (2020) Effect of drought stress on certain morphological and physiological characteristics of a resistant and a sensitive canola cultivar. Chem Biodivers 17(2):1–18

    Article  CAS  Google Scholar 

  • Kristamtini K, Taryono T, Basunanda P, Murti RH (2016) Keragaman genetik kultivar padi beras hitam lokal berdasarkan penanda mikrosatelit. Jurnal Agro Biogen 10:65–69

    Google Scholar 

  • Lee JC, Kim JD, Hsieh FH, Eun JB (2008) Production of black rice cake using ground black rice and medium-grain brown rice. Int J Food Sci Technol 43:1078–1082

    Article  CAS  Google Scholar 

  • Lee D-K, Chung PJ, Jeong J, Jang G, Bang S, Jung H, Kim Y, Ha S-H, Choi Y, Kim J-J (2016) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J 15:10

    Google Scholar 

  • Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, Jung H, Kim YS, Ha SH, Choi YD, Kim JK (2017) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J 15(6):754–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Lv X, Wang X, Wang L, Zhang M, Ren M (2018) Effect of abiotic stress on anthocyanin accumulation and grain weight in purple wheat. Crop Pasture Sci 69:1208–1214

    Article  CAS  Google Scholar 

  • Liang YC, Hu F, Yang MC, Zhu XL, Wang GP, Wang YL (1999) Mechanism of high yield and irrigation water use efficiency of rice in plastic film mulched dryland. Sci Agric Sin 32:26–32

    Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–603

    Article  CAS  Google Scholar 

  • Lotkowska EM, Tohge T, Fernie RA, Xue PG, Balazadeh S, Roeber MB (2015) The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiol 169(3):1862–1880

    PubMed  PubMed Central  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  • Martín J, Kuskoski EM, Navas MJ, Asuero AG (2017) Antioxidant capacity of anthocyanin pigments. In: Justino GC (ed) Flavonoids—from biosynthesis to human health, vol 10. Intech Open, p 5772

    Google Scholar 

  • Mishra D, Shekhar S, Chakraborty S, Chakraborty N (2002) Wheat 2-Cys peroxiredoxin plays a dual role in chlorophyll biosynthesis and adaptation to high temperature. Plant J 105:1374–1389

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nakashima K, Tran LS, VanNguyen D, Fujita M, Maruyama K, Todaka D (2007) Functional analysis of a NAC-type transcription factor 69 OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Ray JD, Sinclair TR (1998) The effect of pot size on growth and transpiration of maize and soybean during water deficit stress. J Exp Bot 49:1381–1386

    Article  CAS  Google Scholar 

  • Raye R, Tran HD, Xuan TD, Khank TD (2018) Imposed water deficit after anthesis for the improvement of macronutrients, quality, phytochemical, and antioxidants in rice grain. Sustainability 10:4843

    Article  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  CAS  PubMed  Google Scholar 

  • Selote DS, Bharti S, Khanna-Chopra R (2004) Drought acclimation reduces O2•—accumulation and lipid peroxidation in wheat seedlings. Biochem Biophys Res Commun 314:724–729

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Shinozaki KY (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Sinclair TR, Ludlow MM (1986) Influence of soil water supply on the plant water balance of four tropical grain legumes. Aust J Plant Physiol 13:319–340

    Google Scholar 

  • Soeksmanto A, Hapsari Y, Simanjuntak P (2007) Kandungan Antioksidan pada Beberapa Bagian Tanaman Mahkota Dewa. Phaleria macrocarpa (Scheff) Boerl. (Thymelaceae). Biodiversitas 8:92–95

    Article  Google Scholar 

  • Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16:13561–13578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542

    Article  CAS  PubMed  Google Scholar 

  • Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2022) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155(3):349–361

    Article  Google Scholar 

  • Sutrisno S, Susanto FA, Wijayanti P, Dewi M (2018) Screening of resistant Indonesian black rice cultivars against bacterial leaf blight Screening of resistant Indonesian black rice cultivars against bacterial leaf blight. Euphytica 214:199

    Article  CAS  Google Scholar 

  • Taylor IB (1991) Genetics of ABA synthesis. In: Davies WJ, Jones HG (eds) Abscisic acid: physiology and biochemistry. Bios Scientific Publishers Ltd, Oxford, pp 23–38

    Google Scholar 

  • Tezera W, Mitchhel VJ, Driscoll SP, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917

    Article  CAS  Google Scholar 

  • Velazquez E, Tournier HA, de Buschiazzo PM, Saavedra G, Schinella GR (2003) Antioxidant activity of Paraguayans plant extracts. Fitoterapia 74:91–97

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Liu W, Yu L, Guo Z, Chen Z, Jiang S, Xu H, Fang H, Wang Y, Zhang Z, Chen X (2020) Heat shock factor A8a modulates flavonoid synthesis and drought tolerance. Plant Physiol 184:1273–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhang J, Li X, Xu JJ, Wang L (2016) Identification and characterization of a PutCu/Zn-SOD gene from Puccinellia tenuiflora (Turcz.) Scribn. et Merr. Plant Growth Regul 79:55–64

    Article  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183

    Article  CAS  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379(4):985–989

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Global Collaboration Program FY2019-2021 from NAIST to NY and YAP.

Funding

This research was funded by the Ministry of Research, Technology and Higher Education, Republic of Indonesia, by a Universities Leading Research Project 2018 grant to YAP (Contract No. 140/UN1/DITLIT/DIT-LIT/LT/2018).

Author information

Authors and Affiliations

Authors

Contributions

AS, ICN, HSDP and PW carried out the research and analyzed the data. AS, FAS, NY, TRN, and YAP interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Yekti Asih Purwestri.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastian, A., Nugroho, I.C., Putra, H.S.D. et al. Identification and characterization of drought-tolerant local pigmented rice from Indonesia. Physiol Mol Biol Plants 28, 1061–1075 (2022). https://doi.org/10.1007/s12298-022-01185-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-022-01185-5

Keywords

Navigation