Skip to main content
Log in

Regulation of α-expansins genes in Arabidopsis thaliana seeds during post-osmopriming germination

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Seed osmopriming is a pre-sowing treatment that involves limitation of the seed water imbibition, so that pre-germinative metabolic activities proceed without radicular protrusion. This technique is used for improving germination rate, uniformity of seedling growth and hastening the time to start germination. In Arabidopsis thaliana, seed germination has been associated with the induction of enzymes involved in cell wall modifications, such as expansins. The α-expansins (EXPAs) are involved in cell wall relaxation and extension during seed germination. We used online tools to identify AtEXPA genes with preferential expression during seed germination and RT-qPCR to study the expression of five EXPA genes at different germination stages of non-primed and osmoprimed seeds. In silico promoter analysis of these genes showed that motifs similar to cis-acting elements related to abiotic stress, light and phytohormone responses are the most overrepresented in promoters of these AtEXPA genes, showing that their expression is likely be regulated by intrinsic developmental and environmental signals during Arabidopsis seed germination. The osmopriming conditioning had a decreased time and mean to 50% germination without affecting the percentage of final seed germination. The dried PEG-treated seeds showed noticeable high mRNA levels earlier at the beginning of water imbibition (18 h), showing that transcripts of all five EXPA isoforms were significantly produced during the osmopriming process. The strong up-regulation of these AtEXPA genes, mainly AtEXPA2, were associated with the earlier germination of the osmoprimed seeds, which qualifies them to monitor osmopriming procedures and the advancement of germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Physiol 15:63–78

    CAS  Google Scholar 

  • Abid M, Hakeem A, Shao Y, Liu Y, Zahoor R, Fan Y, Suyu J, Ata-Ul-Karim ST, Tian Z, Jiang D, Snider JL, Dai T (2018) Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.). Environ Exp Bot 145:12–20

    Article  CAS  Google Scholar 

  • Baskin JM, Baskin CC (1972) Ecological life cycle and physiological ecology of seed germination of Arabidopsis thaliana. Can J Bot 50:353–360

    Article  Google Scholar 

  • Bewley JD, Bradford K, Hilhorst H, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy. Springer, Berlin

    Book  Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience 21:1105–1112

    Google Scholar 

  • Bray CM (1995) Biochemical processes during the osmopriming of seeds. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 767–789

    Google Scholar 

  • Budzinski IGF, dos Santos TB, Sera T, Pot D, Vieira LGE, Pereira LFP (2011) Expression patterns of three α-expansin isoforms in Coffea arabica during fruit development. Plant Biol 13:462–471

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Caderas D, Muster M, Vogler H, Mandel T, Rose JKC, McQueen-Manson S, Kuhlemeier C (2000) Limited correlation between expansin gene expression and elongation growth rate. Plant Physiol 123:1399–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Arora R (2013) Priming memory invokes seed stress-tolerance. Environ Exp Bot 94:33–45

    Article  CAS  Google Scholar 

  • Chen F, Bradford KJ (2000) Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol 124:1265–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Dahal P, Bradford K (2001) Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol 127:928–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Fessehaie A, Arora R (2012) Dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinacia oleracea L. cv. Bloomsdale: possible role in stress tolerance. Plant Sci 183:27–36

    Article  CAS  PubMed  Google Scholar 

  • Cho H, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14:3237–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho H, Kende H (1997) Expansins and internodal growth of deepwater rice. Plant Physiol 113:1145–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colot V, Robert LS, Kavanagh TA, Bevan MM, Thompson RD (1987) Localization of sequences in wheat endosperm protein genes which confer tissue-specific expression in tobacco. EMBO J 6:3559–3564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (2015) Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol 25:162–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekkers BJW, Willems L, Bassel GW, van Bolderen-Veldkamp RPM, Ligterink W, Hilhorst HWM, Bentsink L (2012) Identification of reference genes for RT-qPCR expression analysis in Arabidopsis and tomato seeds. Plant Cell Physiol 53:28–37

    Article  CAS  PubMed  Google Scholar 

  • El-Kassaby YA, Moss I, Kolotelo D, Stoehr M (2008) Seed germination: mathematical representation and parameters extraction. For Sci 54:220–222

    Google Scholar 

  • Elkoca E, Haliloglu K, Esitken A, Ercisli S (2007) Hydro- and osmopriming improve chickpea germination. Acta Agric Scan Sect B Soil Plant Sci 57:193–200

    Google Scholar 

  • Elzenga JTM, Staal M, Prins HBA (2000) Modulation by phytochrome of the blue light-induced extracellular acidification by leaf epidermal cells of pea (Pisum sativum L.): a kinetic analysis. Plant J 22:377–389

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R, Lynch T (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foti S, Cosentino SL, Patanè C, D’Agosta GM (2002) Effects of osmoconditioning upon seed germination of sorghum (Sorghum bicolor (L.) Moench) under low temperatures. Seed Sci Technol 30:521–533

    Google Scholar 

  • Galland M, Huguet R, Arc E, Cueff G, Job D, Rajjou L (2014) Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination. Mol Cell Proteomics 13:252–268

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmartin PM, Sarokin L, Memelink J, Chua NH (1990) Molecular light switches for plant genes. Plant Cell 2:369–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh HH, Sloan J, Dorca-Fornell C, Fleming A (2012) Inducible repression of multiple expansin genes leads to growth suppression during leaf development. Plant Physiol 159:1759–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori T, Totsuka M, Hobo T, Kagaya Y, Yamamoto-Toyoda A (2002) Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol 43:136–140

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217:109–119

    Article  CAS  PubMed  Google Scholar 

  • Heydecker W, Gibbins BM (1978) The priming of seeds. Acta Hortic 83:213–223

    Article  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Yin H, Peng S, Khan FA, Khan F, Sameeullah M, Hussain HA, Huang J, Cui K, Ni L (2016) Comparative transcriptional profiling of primed and non-primed rice seedlings under submergence. Front Plant Sci 7:1125

    PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Strickland E, Deng XW (2005) Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and arabidopsis. Plant Cell 17:3239–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joosen RV, Kodde J, Willems LA, Ligterink W, van der Plas LH, Hilhorst HW (2010) GERMINATOR: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. Plant J 62:148–159

    Article  CAS  PubMed  Google Scholar 

  • Karaaslan M, Hrazdina G (2010) Characterization of an expansin gene and its ripening-specific promoter fragments from sour cherry (Prunus cerasus L.) cultivars. Acta Physiol Plant 32:1073–1084

    Article  CAS  Google Scholar 

  • Khadraji A, Mouradi M, Houasli C, Qaddoury A, Ghoulam C (2017) Growth and antioxidant responses during early growth of winter and spring chickpea (Cicer arietinum) under water deficit as affected by osmopriming. Seed Sci Technol 45:198–211

    Article  Google Scholar 

  • Kubala S, Wojtyla Ł, Quinet M, Lechowska K, Lutts S, Garnczarska M (2015) Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. J Plant Physiol 183:1–12

    Article  CAS  PubMed  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamichaney A, Katiyar PK (2017) Plant emergence and t50 responses of two chickpea cultivar differing in seed coat colour to PEG-osmopriming at sub-optimal temperature. Natl Acad Sci Lett 40:399–403

    Article  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Choi HS, Cho HT (2001) Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. Mol Cell 31:393–397

    Article  CAS  Google Scholar 

  • Marowa P, Ding A, Kong Y (2016) Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep 35:949–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls: analysis of wall hydrolysis, stress relaxation and binding. Plant Physiol 107:87–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris K, Linkies A, Müller K, Oracz K, Wang X, Lynn JR, Leubner-Metzger G, Finch-Savage WE (2011) Regulation of seed germination in the close Arabidopsis relative Lepidium sativum: a global tissue-specific transcript analysis. Plant Physiol 155:1851–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller B, Bourdais G, Reidy B, Bencivenni C, Massonneau A, Condamine P, Rolland G, Conéjéro G, Rogowsky P, Tardieu F (2007) Association of specific expansins with growth in maize leaves is maintained under environmental, genetic, and developmental sources of variation. Plant Physiol 143:278–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakabayashi K, Okamoto M, Koshiba TT, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20:55–67

    Article  CAS  Google Scholar 

  • O’Neill SD, Kumagai MH, Majumdar A, Huang N, Sutliff TD, Rodriguez RL (1990) The alpha-amylase genes in Oryza sativa: characterization of cDNA clones and mRNA expression during seed germination. Mol Gen Genet 221:235–244

    PubMed  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwalhara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olszewski N, Sun T, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:61–80

    Article  CAS  Google Scholar 

  • Özbingol N, Corbineau F, Groot SPC, Bino RJ, Côme D (1999) Activation of the cell cycle in tomato (Lycopersicon esculentum Mill.) seeds during osmoconditioning as related to temperature and oxygen. Ann Bot 84:245–251

    Article  Google Scholar 

  • Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18:1887–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Sano N, Kim J-S, Onda Y, Nomura T, Mochida K, Okamoto M, Seo M (2017) RNA-Seq using bulked recombinant inbred line populations uncovers the importance of brassinosteroid for seed longevity after priming treatments. Sci Rep 7:8095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y (2006) Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J 48:354–366

    Article  CAS  PubMed  Google Scholar 

  • Soeda Y, Konings MCJM, Vorst O, Van AMML, Houwelingen GM, Stiipen CA, Maliepaard J, Kodde RJ, Bino SPC (2005) Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol 137:354–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stålberg K, Ellerstöm M, Ezcurra I, Ablov S, Rask L (1996) Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta 199:515–2199

    Article  PubMed  Google Scholar 

  • Stamm P, Ravindran P, Mohanty B, Tan EL, Yu H, Kumar PP (2012) Insights into the molecular mechanism of RGL2-mediated inhibition of seed germination in Arabidopsis thaliana. BMC Plant Biol 12:179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun YY, Sun YJ, Wang MT, Li XY, Guo X, Hu R, Ma J (2010) Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agron Sin 36:1931–1940

    Article  CAS  Google Scholar 

  • Sutoh K, Yamauchi D (2003) Two cis-acting elements necessary and sufficient for gibberellin-upregulated proteinase expression in rice seeds. Plant J 34:635–645

    Article  CAS  PubMed  Google Scholar 

  • Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Physiol 46:445–474

    Article  CAS  Google Scholar 

  • Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Hermann C, Thieffry D, Van Helden J (2011) RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res 39:W86–W91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyofuku K, Umemura T, Yamaguchi J (1998) Promoter elements required for sugar-repression of the RAmy3D gene for alpha-amylase in rice. FEBS Lett 428:275–280

    Article  CAS  PubMed  Google Scholar 

  • Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18:2971–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Zhang Z, Zou X, Huang J (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue GP (2002) Characterisation of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity. Nucleic Acids Res 30:e77

    Article  PubMed  PubMed Central  Google Scholar 

  • Yacoubi R, Job C, Belghazi M, Chaibi W, Job D (2011) Toward characterizing seed vigor in alfalfa through proteomic analysis of germination and priming. J Protome Res 10:3891–3903

    Article  CAS  Google Scholar 

  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan A, Wu M, Yan L, Hu R, Ali I, Gan Y (2014) AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS ONE 9:e85208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17:209–214

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Yan H, Chen W, Liu J, Jiang C, Jiang H, Zhu S, Cheng B (2014) Genome-wide identification and characterization of maize expansin genes expressed in endosperm. Mol Genet Genomics 289:1061–1074

    Article  CAS  PubMed  Google Scholar 

  • Zhuo J, Wang W, Lu Y, Sen W, Wang X (2009) Osmopriming-regulated changes of plasma membrane composition and function were inhibited by phenylarsine oxide in soybean seeds. J Integr Plant Biol 51:858–867

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful by the suggestions provided by Dr. Peter E. Toorop. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Contributions

LGEV and AFR conceived and designed the experiments. FLA, CCC and NBMN performed the germination and priming experiments. AFR and NVS carried out the bioinformatics analysis. AFR and TBS carried out the RT-qPCR assays and analyzed the data. LGEV, AFR and NVC wrote the manuscript.

Corresponding author

Correspondence to Alessandra Ferreira Ribas.

Ethics declarations

Conflict of interest

NVS has received a grant from São Paulo Research Foundation (FAPESP) and Coordination for the Improvement of Higher Education Personnel (CAPES) for the fellowship during her doctor degree and National Council for Scientific and Technological Development—CNPq for the fellowship during her master degree. TBS has received a grant from Coordination for the Improvement of Higher Education Personnel (CAPES) for postdoctoral fellowship. LGEV has received a grant from National Council for Scientific and Technological Development—CNPq for the research fellowship. AFR, FLA, CCC, NBM declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Heatmap produced by GENEVESTIGATOR (https://www.genevestigator.com) showing the expression pattern of 23 α-expansins during developmental stages of A. thaliana. The stages of development from seed germination to senescence are grouped arbitrarily based on Boyes et al. (2001). Data were retrieved from GENEVESTIGATOR (Zimmermann et al. 2004) (TIFF 1478 kb)

Fig. S2

Expression pattern of eight α-expansins during developmental stages of A. thaliana produced by GENEVESTIGATOR (https://www.genevestigator.com). The stages of development from seed germination to senescence are grouped arbitrarily based on Boyes et al. (2001). Data were retrieved from GENEVESTIGATOR (Zimmermann et al. 2004) (TIFF 1415 kb)

Fig. S3

Transcriptional profiles of five AtEXPAs during seed germination. The data were generated in the database BAR eFP Browser - http://bar.utoronto.ca/efp_arabidopsis/cgi-bin/efpWeb.cgi (Winter et al. 2007) - based on experiments for (A) non-dormant, non-stratified after-ripened wild-type seeds (Nakabayashi et al. 2005), (B) cold-stratified wild-type seeds (Yamauchi et al. 2004) (TIFF 586 kb)

Fig. S4

Distribution of the identified α-expansins genes on five chromosomes of A. thaliana. The chromosomal position of each gene was mapped according to the A. thaliana genome. The location of each gene was indicated by a line (TIFF 1576 kb)

Fig. S5

Putative cis-regulatory elements mapped onto the promoters of five EXPAs of A. thaliana up-regulated during seed germination. A Gibberellic acid motifs; B Abscisic acid/Abiotic stress motifs; C Light related motifs and D Seed related motifs. The size of each promoter region was one kb in relation to the translation start codon (ATG). A color key of cis-elements is given at the left of the image. Horizontal black lines in each block represent the promoter sequences and colored squares show the position of the mapped cis-element occurrences found in sense (above line) or anti-sense orientation (below line) (TIFF 1871 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira Ribas, A., Volpi e Silva, N., dos Santos, T.B. et al. Regulation of α-expansins genes in Arabidopsis thaliana seeds during post-osmopriming germination. Physiol Mol Biol Plants 25, 511–522 (2019). https://doi.org/10.1007/s12298-018-0620-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-018-0620-6

Keywords

Navigation