Skip to main content
Log in

Effects of extended exposure to cadmium and subsequent recovery period on growth, antioxidant status and polyamine pattern in in vitro cultured carnation

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The effect of different doses of Cd (0.05, 0.1 and 0.2 mM) and subsequent period in a Cd-free medium on growth, the antioxidant status and the polyamine (PA) pattern was studied using in vitro cultured nodal segments of carnation. The Cd within the tissues increased in parallel with its concentration in the culture medium, inhibited growth, altered the concentration of some minerals and decreased the levels of pigments and the total antioxidants. However, the concentration of ascorbate (Asc) + dehydroascorbate (DHA) and the Asc redox status remained unaffected, and malondialdehyde (MDA) increased only with 0.2 mM Cd. Cd also affected PA metabolism, decreasing the total PA concentration and disturbing the relative predominance of each PA fraction. Cd exposure increased the total putrescine (Put)/(spermidine (Spd) + spermine (Spm)) ratio, and an opposite pattern was recorded during the phase in Cd-free medium. Regarding individual amines, Cd induced significant changes mainly in the free Put levels. Our results suggest that Cd produces oxidative stress and that PA (especially free Put and the total Put/(Spd+Spm) ratio), are good indicators of the stress caused by Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Asc:

Ascorbate

Cad:

Cadaverine

Chl:

Chlorophyll

DHA:

Dehydroascorbate

DW:

Dry weight

MDA:

Malondialdehyde

MS:

Murashige and Skoog’s medium

PA:

Polyamine(s)

Put:

Putrescine

ROS:

Reactive oxygen species

Spd:

Spermidine

Spm:

Spermine

References

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines; molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  Google Scholar 

  • Arnao M, Cano A, Acosta M (2001) The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 73:239–244

    Article  CAS  Google Scholar 

  • Balestrasse KB, Gallego SM, Benavides MP, Tomaro ML (2005) Polyamines and proline are affected by cadmium stress in nodules and roots of soybean plants. Plant Soil 270:343–353

    Article  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent developments. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Chapman HD, Pratt PF (1961) Methods of Analysis for Soils, Plants and Waters. University. Calif. Div. Agric. Sci. (ed.), Riverside, CA, USA

  • Cho U, Seo N (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    Article  CAS  Google Scholar 

  • Chugh LK, Sawhney SK (1999) Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol Biochem 37:297–303

    Article  CAS  Google Scholar 

  • Conklin PL (2001) Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ 24:383–394

    Article  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  PubMed  CAS  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Feller U (2006) Cadmium stress in barley: growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. J Plant Nutr 29:451–468

    Article  CAS  Google Scholar 

  • Di Cagno R, Guidi L, De Gara L, Soldatini GF (2001) Combined cadmium and ozone treatments affect photosynthesis and ascorbate-dependent defences in sunflower. New Phytol 151:627–636

    Article  Google Scholar 

  • Edreva A (1998) Tobacco polyamines as affected by stresses induced by different pathogens. Biol Plant 40:317–320

    Article  Google Scholar 

  • Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488

    Article  CAS  Google Scholar 

  • Groppa MD, Benavides MP, Tomaro ML (2003) Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Sci 164:293–299

    Article  CAS  Google Scholar 

  • Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007a) Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32:265–275

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Tomaro ML, Benavides MP (2007b) Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium- and copper-treated wheat leaves. BioMetals 20:185–195

    Article  PubMed  CAS  Google Scholar 

  • Gupta DK, Tohoyama H, Joho M, Inouhe M (2002) Possible roles of phytochelatins and glutathione metabolism in cadmium tolerance in chickpea roots. J Plant Res 115:429–437

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB (1998) Phytochemical methods. A guide to modern techniques of plant analysis, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • Hatata MM, Adel E (2008) Oxidative stress and antioxidant defence mechanisms in response to cadmium treatments. American-Eurasian J Agric & Environ Sci 4:655–669

    Google Scholar 

  • Heath RL, Parker L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Ianelli MA, Pietrini F, Fiore L, Petrilli L, Massacci A (2002) Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol Biochem 40:977–982

    Article  Google Scholar 

  • Kakkar RK, Sawhney VK (2002) Polyamine research in plants–a changing perspective. Physiol Plant 116:281–292

    Article  CAS  Google Scholar 

  • Kakkar RK, Nagar PK, Ahuja PS, Rai VK (2000) Polyamines and plant morphogenesis. Biol Plant 43:1–11

    Article  CAS  Google Scholar 

  • Kampfenkel K, Van Montagu M, Inzé D (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 225:165–167

    Article  PubMed  CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  PubMed  CAS  Google Scholar 

  • Kuthanová A, Gemperlová L, Zelenková S, Eder J, Machácková I, Opatrný Z, Cvikrová M (2004) Cytological changes and alterations in polyamine contents induced by cadmium in tobacco BY-2 cells. Plant Physiol Biochem 42:149–156

    Article  PubMed  Google Scholar 

  • Larsson EH, Bornman JF, Asp H (1998) Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot 49:1031–1039

    Article  CAS  Google Scholar 

  • Larsson EH, Asp H, Bornman JF (2002) Influence of prior Cd2+ exposure on the uptake of Cd2+ and other elements in the phytochelatin-deficient mutant, cad1-3, of Arabidopsis thaliana. J Exp Bot 53:447–453

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with the tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Ranade SS, Nagar PK, Kumar N (2000) Role of polyamines and ethylene as modulators of plant senescence. J Biosci 25:291–299

    Article  PubMed  CAS  Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133:829–837

    Article  PubMed  CAS  Google Scholar 

  • Piqueras A, Cortina M, Serna MD, Casas JL (2002) Polyamines and hyperhydricity in micropropagated carnation plants. Plant Sci 162:671–678

    Article  CAS  Google Scholar 

  • Potters G, De Gara L, Asard H, Horemans N (2002) Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol Biochem 40:537–548

    Article  CAS  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341

    Article  PubMed  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sanità di Toppi L, Lambardi M, Pazzagli L, Cappugi G, Durante M, Gabbrielli R (1998) Response to cadmium in carrot in vitro plants and cell suspension cultures. Plant Sci 137:119–129

    Article  Google Scholar 

  • Schützendübel A, Nikolova P, Rudolf P, Polle A (2002) Cadmium and H2O2-induced oxidative stress in Populus canescens roots. Plant Physiol Biochem 40:577–584

    Article  Google Scholar 

  • Sharma P, Rajam MV (1995) Spatial and temporal changes in endogenous polyamine levels associated with somatic embryogenesis from different hypocotyl segments of eggplant (Solanum melongena L.). J Plant Physiol 146:658–664

    CAS  Google Scholar 

  • Smeets K, Ruytinx J, Semane B, Van Belleghem F, Reman T, Van Sanden S, Vangronsveld J, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–8

    Article  CAS  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotech 9:214–219

    Article  PubMed  CAS  Google Scholar 

  • Vitória AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:701–710

    Article  PubMed  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  • Yokota T, Nakayama M, Harasawa I, Katsuhara M, Kawabw S (1994) Polyamines, indole-3-acetic and abscisic acid in rice phloem sap. Plant Growth Regul 15:125–128

    Article  CAS  Google Scholar 

  • Zhang H, Jiang Y, He Z, Ma M (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Abel Piqueras is gratefully acknowledged for supplying the initial cultures of in vitro carnation shoots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Casas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrano-Martínez, F., Casas, J.L. Effects of extended exposure to cadmium and subsequent recovery period on growth, antioxidant status and polyamine pattern in in vitro cultured carnation. Physiol Mol Biol Plants 17, 327–338 (2011). https://doi.org/10.1007/s12298-011-0081-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-011-0081-7

Keywords

Navigation