Skip to main content
Log in

A novel multi-objective memetic algorithm based on opposition-based self-adaptive differential evolution

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Under the framework of evolutionary paradigms, many evolutionary algorithms have been designed for handling multi-objective optimization problems. Each of the different algorithms may display exceptionally good performance in certain optimization problems, but none of them can be completely superior over one another. As such, different evolutionary algorithms are being synthesized to complement each other in view of their strengths and the limitations inherent in them. In this study, the novel memetic algorithm known as the Opposition-based Self-adaptive Hybridized Differential Evolution algorithm (OSADE) is being comprehensively investigated through a comparative study with some state-of-the-art algorithms, such as NSGA-II, non-dominated sorting Differential Evolution (NSDE), MOEA/D-SBX, MOEA/D-DE and the Multi-objective Evolutionary Gradient Search (MO-EGS) by using a suite of different benchmark problems. Through the experimental results that are presented by employing the Inverted Generational Distance (IGD) and the Hausdorff Distance performance indicators, it is seen that OSADE is able to achieve competitive, if not better, performance when compared to the other algorithms in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

    MATH  Google Scholar 

  2. Coello CA (2006) Evolutionary multi-objective optimization: a historical view of the field. IEEE Computat Intell Mag 1(1):28–36

    Article  Google Scholar 

  3. Tan KC, Khor EF, Lee TH (2005) Multiobjective evolutionary algorithms and applications. Springer, Berlin

    MATH  Google Scholar 

  4. Zitzler E, Thiele L, Bader J (2010) On set-based multiobjective optimization. IEEE Trans Evol Comput 14(1):58–79

    Article  Google Scholar 

  5. Kim JH, Lee CH (2008) Multi-objective evolutionary generation process for specific personalties of artificial creature. IEEE Computat Intell Mag 3(1):43–53

    Article  Google Scholar 

  6. Price KV, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization, 1st edn. Springer, Berlin

    MATH  Google Scholar 

  7. Abbass HA, Sarker R (2002) The Pareto differential evolution algorithm. Int J Artif Intell Tools 11(4):531–552

    Article  Google Scholar 

  8. Kukkonen S, Lampinen J (2005) GDE3: the third evolution step of generalized differential evolution. In: Proceedings of IEEE congress on evolutionary computation, pp 332–339

  9. Xue F, Sanderson AC, Graves RJ (2005) Pareto-based multiobjective differential evolution. In: Proceedings of IEEE congress on evolutionary computation, pp 228–235

  10. Langdon WB, Poli R (2007) Evolving problems to learn about particle swarm optimizers and other search algorithms. IEEE Trans Evol Comput 11(5):561–578

    Article  Google Scholar 

  11. Denysiuk R, Costa L, Santo IE (2013) Many-objective optimizatio using differential evolution with variable-wise mutation restriction. In: Proceedings of the conference on genetic and evolutionary computation, pp 591–598

  12. Noman N, Iba H (2008) Accelerating differential evolution using an adaptive local search. IEEE Trans Evol Comput 12(1):107–125

    Article  Google Scholar 

  13. Fan H-Y, Lampinen J (2003) A trigonometric mutation operation to differential evolution. J Global Optim 27(1):105–129

    Article  MathSciNet  MATH  Google Scholar 

  14. Das S, Abraham A, Chakraborty UK, Konar A (2009) Differential evolution using a neighbourhood based mutation operator. IEEE Trans Evol Comput 13(3):526–553

    Article  Google Scholar 

  15. Digalakis J, Margaritis K (2004) Performance comparison of memetic algorithms. J Appl Math Comput 158(1):237–252

    Article  MathSciNet  MATH  Google Scholar 

  16. Lozano M, Herrera F, Krasnogor N, Molina D (2004) Real-coded memetic algorithms with crossover hill-climbing. Evol Comput 12(3):273–302

    Article  Google Scholar 

  17. Renders J-M, Bersini H (1994) Hybridizing genetic algorithms with hill-climbling methods for global optimization: two possible ways. In: Proceedings of the first IEEE conference on evolutionary computation, IEEE World Congress on Computational Intelligence, pp 312–317

  18. Mei Y, Tang K, Yao X (2011) Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem. IEEE Trans Evol Comput 15(2):151–165

    Article  Google Scholar 

  19. Galski RL, Sousa FL, Ramos FM, Muraoka I (2004) Application of a new hybrid evolutionary strategy to spacecraft thermal design. In: Proceedings of genetic and evolutionary computation conference

  20. Attaviriyanupap P, Kita H, Tanaka E, Hasegawa J (2002) A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function. IEEE Trans Power Syst 17(2):411–416

    Article  Google Scholar 

  21. Kapekan ZS, Savic DA, Walters GA (2003) A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks. J Hydraul Res 41(5):481–492

    Article  Google Scholar 

  22. Pant M, Thangaraj R, Grosan C, Abraham A (2008) Hybrid differential evolution—Particle Swarm Optimization algorithm for solving global optimization problems. In: Third international conference on digital information management, pp 18–24

  23. Thangaraj R, Pant M, Abraham A, Badr Y (2009) Hybrid evolutionary algorithm for solving global optimization problems. In: Hybrid Artificial Intelligent Systems, Lecture Notes in Computer Science. Springer, Germany, pp 310–318

  24. Chung CY, Liang CH, Wong KP, Duan XZ (2010) Hybrid algorithm of differential evolution and evolutionary programming for optimal reactive power flow. Gener Transm Distrib IET 4(1):84–93

    Article  Google Scholar 

  25. Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput Fusion Found Methodol Appl 9(6):448–462

    MATH  Google Scholar 

  26. Xue F, Sanderson AC, Bonissone PP, Graves RJ (2005) Fuzzy logic controlled multiobjective differential evolution. In: Proceedings of the IEEE international conference on fuzzy systems, pp 720–725

  27. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

  28. Teo J (2006) Exploring dynamic self-adaptive populations in differential evolution. Soft Comput Fusion Found Methodol Appl 10(8):673–686

    Google Scholar 

  29. Chong JK, Tan KC (2015) An opposition-based self-adaptive hybridized differential evolution for multi-objective optimization (OSADE). In: Proceedings of the 18th Asia Pacific symposium on intelligent and evolutionary systems, pp 447–461

  30. Zhang W-J, Xie X-F (2003) DEPSO: hybrid particle swarm with differential evolution operator. In: Proceedings of the IEEE international conference on systems, man and cybenetics, pp 3816–3821

  31. Sun J, Zhang Q, Tsang E (2005) DE/EDA: a new evolutionary algorithm for global optimization. Inf Sci 169:249–262

    Article  MathSciNet  Google Scholar 

  32. Das S, Konar A, Chakraborty UK (2007) Annealed differential evolution. In: Proceedings of the IEEE congress on evolutionary computation, pp 1926–1933

  33. Tsutsui S, Yamamura M, Higuchi T (1999) Multi-parent recombination with simplex crossover in real coded genetic algorithms. In: Proceedings of the genetic and evolutionary computation conference (GECCO’99), pp 657–664

  34. Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of IEEE congress on evolutionary computation, pp 1785–1791

  35. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657

    Article  Google Scholar 

  36. Huang VL, Qin AK, Suganthan PN, Tasgetiren MF (2007) Multi-objective optimization based on self-adaptive differential evolution algorithm. In: IEEE congress on evolutionary computation, pp 3601–3608

  37. Huang VL, Zhao SZ, Mallipeddi R, Suganthan PN (2009) Multi-objective optimization using self-adaptive differential evolution algorithm. In: IEEE congress on evolutionary computation, pp 190–194

  38. Zamuda A, Brest J, Boskovic B, Zumer, V (2007) Differential evolution for multiobjective optimization with self-adaptation. In: IEEE congress on evolutionary computation, pp 3617–3624

  39. Robic T, Filipic B (2005) DEMO: differential evolution for multiobjective optimization. In: Proceedings of third international conference for evolutionary multi-criterion optimization, LNCS, vol 3410, pp 520–533

  40. Storn R, Price K (1997) Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  41. Arnold DV, Salomon R (2007) Evolutionary gradient search revisited. IEEE Trans Evol Comput 11(4):480–495

    Article  Google Scholar 

  42. Liu D, Tan KC, Goh CK, Ho WK (2007) A multiobjective memetic algorithm based on particle swarm optimization. IEEE Trans Syst Man Cybern B Cybern 37(1):42–50

    Article  Google Scholar 

  43. Goh CK, Ong YS, Tan KC (2008) An investigation on evolutionary gradient search for multi-objective optimization. In: Proceedings of IEEE congress on evolutionary computation, pp 3742–3747

  44. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79

    Article  Google Scholar 

  45. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: Proceedings of the. In: International conference on computational intelligence for modeling, control and automation, pp 695–701

  46. Goh CK, Tan KC, Liu DS, Chiam SC (2010) A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. Eur J Oper Res 202(1):42–54

    Article  MATH  Google Scholar 

  47. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  48. Iorio AW, Li X (2004) Solving rotated multiobjective optimization problems using differential evolution. In: Proceedings of AI 2004: advances in artificial intelligence, LNCS, vol 3339, pp 861–872

  49. Angira R, Babu BV (2005) Non-dominated sorting differential evolution (NSDE): An extension of differential evolution for multi-objective optimization. In: Proceedings of the 2nd Indian international conference on artificial intelligence, pp 1428–1443

  50. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  51. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302

    Article  Google Scholar 

  52. Miettinen K (1999) Nonlinear multiobjective optimization. Springer, Berlin

    MATH  Google Scholar 

  53. Coello CAC, Cortes NC (2005) Solving multiobjective optimization problems using an artificial immune system. Genetic Program Evol Mach 6(2):163–190

    Article  Google Scholar 

  54. Schutze O, Esquivel X, Lara A, Coello CAC (2012) Using the average hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans Evol Comput 16(4):504–522

    Article  Google Scholar 

  55. Deb K, Sinha A, Kukkonen S (2006) Multi-objective test problems, linkages, and evolutionary methodologies. In: Proceedings of the eighth annual conference on genetic and evoluionary computation, pp 1141–1148

  56. Schutze O, Lara A, Coello CAC (2011) On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Trans Evol Comput 15(4):444–455

  57. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

  58. Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: IEEE congress in evolutionary computation, pp 825–830

  59. Zhang Q, Zhou A, Zhao PN, Suganthan S, Liu W, Tiwari S (2009) Multiobjective optimization test instances for the CEC 2009 special session and competition. The School of Computer Science and Electronic Engineering, Technical Report CES-487

  60. Huband S, Hingston P, Barone L, White L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506

    Article  Google Scholar 

  61. Garza-Fabre M, Pulido GT, Coello CAC (2009) Ranking methods for many-objective optimization. In: Proceedings of the 8th Mexican international conference on artificial intelligence, pp 633–645

  62. Ishibuchi H (2008) Evolutionary many-objective optimization: a short review. In: IEEE congress on evolutionary computation, pp 2419–2426

  63. Zou X, Chen Y, Liu M, Kang L (2008) A new evolutionary algorithm for solving many-objective optimization problems. IEEE Trans Syst Man Cybern B Cybern 38(5):1402–1412

    Article  Google Scholar 

  64. Deb K, Theile L, Laumanns M, Zitzler E (2001) Scalable test problems for evolutionary multi-objective optimization. KanGAL, Report 2001001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Chong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, J.K. A novel multi-objective memetic algorithm based on opposition-based self-adaptive differential evolution. Memetic Comp. 8, 147–165 (2016). https://doi.org/10.1007/s12293-015-0170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-015-0170-1

Keywords

Navigation