Skip to main content

Advertisement

Log in

Are Adiponectin and Insulin Resistance Related to Stress Hyperglycaemia in Critically Ill Patients?

  • SHORT COMMUNICATION
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Stress hyperglycaemia (SH) is frequent in critical illness, increases morbidity and mortality and is strongly associated with acute kidney injury (AKI). It remains unanswered whether insulin resistance or decreased adiponectin contribute to SH as they do to chronic hyperglycaemia. Our aims were to identify potential relationships between insulin resistance, serum high molecular weight (HMW) adiponectin and SH, while controlling for and excluding other risk factors and confounders of both SH and chronic hyperglycaemia such as diabetes, as well as potential relationships between HMW-adiponectin and subsequent AKI. We studied 158 critically ill patients admitted to intensive care units. SH was defined by blood glucose > 140 mg/dl, insulin resistance as Homeostasis model assessment-2-scores above the 75th percentile, decreased HMW-adiponectin as values below the 25th percentile, and AKI by Kidney-Disease-Improving-Global-Outcomes criteria. Seventy-seven patients (48.7%) featured SH. Patients with and without SH were well balanced in regard to most factors causing chronic hyperglycaemia. The SH group had substantially higher HOMA-2-scores and lower serum HMW-adiponectin levels. Adjusted to risk factors of SH and chronic hyperglycaemia, both insulin resistance and decreased serum HMW-adiponectin levels were independently and strongly related to SH (adjusted odds ratios 7.24 (95% confidence interval 3.17–19.01) and 3.10 (95% confidence interval 1.61–5.47), respectively). In the subgroups of SH and non-SH patients without AKI, HMW-adiponectin was significantly higher. In conclusion, insulin resistance and decreased HMW-adiponectin may be risk factors of SH in critically ill patients. In addition, elevated serum HMW-adiponectin may attenuate AKI irrespective of SH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Dungan KM, Braithwaite SS, Preiser JC. Stress hyperglycaemia. Lancet. 2009;373(9677):1798–807. https://doi.org/10.1016/S0140-6736(09)60553-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ülger P, Yildiz E, Tyczynski B, Findeisen H, Kribben A, Janssen OE, et al. Effect of stress hyperglycaemia on acute kidney injury in non-diabetic critically ill patients? Int Urol Nephrol. 2023;55(12):3253–9. https://doi.org/10.1007/s11255-023-03612-2.

    Article  CAS  PubMed  Google Scholar 

  3. Cui J, Panse S, Falkner B. The role of adiponectin in metabolic and vascular disease: a review. Clin Nephrol. 2011;75(1):26–33.

    CAS  PubMed  Google Scholar 

  4. Robinson K, Prins J, Venkatesh B. Clinical review: adiponectin biology and its role in inflammation and critical illness. Crit Care. 2011;15(2):221. https://doi.org/10.1186/cc10021.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alipoor E, Mohammad Hosseinzadeh F, Hosseinzadeh-Attar MJ. Adipokines in critical illness: a review of the evidence and knowledge gaps. Biomed Pharmacother. 2018;108:1739–50. https://doi.org/10.1016/j.biopha.2018.09.165.

    Article  CAS  PubMed  Google Scholar 

  6. Lehrke M, Broedl UC, Biller-Friedmann IM, Vogeser M, Henschel V, Nassau K, et al. Serum concentrations of cortisol, interleukin 6, leptin and adiponectin predict stress induced insulin resistance in acute inflammatory reactions. Crit Care. 2008;12(6):R157. https://doi.org/10.1186/cc7152.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Langouche L, Vander Perre S, Frystyk J, Flyvbjerg A, Hansen TK, Van den Berghe G. Adiponectin, retinol-binding protein 4, and leptin in protracted critical illness of pulmonary origin. Crit Care. 2009;13(4):R112. https://doi.org/10.1186/cc7956.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saberi F, Heyland D, Lam M, Rapson D, Jeejeeghoy K. Prevalence, incidence, and clinical resolution of insulin resistance in critically ill patients: an observational study. JPEN J Parenter Enteral Nutr. 2008;32(3):227–35. https://doi.org/10.1177/0148607108316195.

    Article  CAS  PubMed  Google Scholar 

  9. Jernås M, Olsson B, Sjöholm K, Sjögren A, Rudemo M, Nellgård B, et al. Changes in adipose tissue gene expression and plasma levels of adipokines and acute-phase proteins in patients with critical illness. Metabolism. 2009;58(1):102–8. https://doi.org/10.1016/j.metabol.2008.08.012.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng CF, Lian WS, Chen SH, Lai PF, Li HF, Lan YF, et al. Protective effects of adiponectin against renal ischemia-reperfusion injury via prostacyclin-PPARα-heme oxygenase-1 signaling pathway. J Cell Physiol. 2012;227(1):239–49. https://doi.org/10.1002/jcp.22726.

    Article  CAS  PubMed  Google Scholar 

  11. Tsugawa-Shimizu Y, Fujishima Y, Kita S, Minami S, Sakaue TA, Nakamura Y, et al. Increased vascular permeability and severe renal tubular damage after ischemia-reperfusion injury in mice lacking adiponectin or T-cadherin. Am J Physiol Endocrinol Metab. 2021;320(2):E179–90. https://doi.org/10.1152/ajpendo.00393.2020.

    Article  CAS  PubMed  Google Scholar 

  12. Jin X, Chen J, Hu Z, Chan L, Wang Y. Genetic deficiency of adiponectin protects against acute kidney injury. Kidney Int. 2013;83(4):604–14. https://doi.org/10.1038/ki.2012.408

    Article  CAS  Google Scholar 

  13. Kellum JA, Lameire N, Aspelin P, Barsoum RS, Burmann EA, Goldstein SL, et al. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012;2(Suppl. 1):S1-138. https://doi.org/10.1038/kisup.20125.

    Article  Google Scholar 

  14. Billings FT, Shaw AD. Clinical trial endpoints in acute kidney injury. Nephron Clin Pract. 2014;127(1–4):89–93. https://doi.org/10.1159/000363725.

    Article  CAS  PubMed  Google Scholar 

  15. Matthew W, Semler Wesley H, Self Jonathan P, Wanderer Jesse M, Ehrenfeld Li, Wang Daniel W, Byrne Joanna L, Stollings Avinash B, Kumar Christopher G, Hughes Antonio, Hernandez Oscar D, Guillamondegui Addison K, May Liza, Weavind Jonathan D, Casey Edward D, Siew Andrew D, Shaw Gordon R, Bernard Todd W, Rice . Balanced Crystalloids versus Saline in Critically Ill Adults New England Journal of Medicine. 2018;378:(9) 829–839 https://doi.org/10.1056/NEJMoa1711584

    Article  PubMed  Google Scholar 

  16. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–95. https://doi.org/10.2337/diacare.27.6.1487.

    Article  PubMed  Google Scholar 

  17. Vassiliadi DA, Tzanela M, Kotanidou A, Orfanos SE, Nikitas N, Armaganidis A, et al. Serial changes in adiponectin and resistin in critically ill patients with sepsis: association with sepsis phase, severity, and circulating cytokine levels. J Crit Care. 2012;27(4):400–9. https://doi.org/10.1016/j.jcrc.2012.04.007.

    Article  CAS  PubMed  Google Scholar 

  18. Zauner A, Nimmerrichter P, Anderwald C, Bischof M, Schiefermeier M, Ratheiser K, et al. Severity of insulin resistance in critically ill medical patients. Metabolism. 2007;56(1):1–5. https://doi.org/10.1016/j.metabol.2006.08.014.

    Article  CAS  PubMed  Google Scholar 

  19. Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol. 2016;8(2):93–100. https://doi.org/10.1093/jmcb/mjw011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carballo MC, Pinto LC, Brito MV. The role of adiponectin in ischemia-reperfusion syndrome: a literature review. Einstein (Sao Paulo). 2020;18:eRW5160. https://doi.org/10.31744/einstein_journal/2020rw5160.

    Article  PubMed  Google Scholar 

  21. Yue H, Zhang Q, Chang S, Zhao X, Wang M, Li W. Adiponectin protects against myocardial ischemia-reperfusion injury: a systematic review and meta-analysis of preclinical animal studies. Lipids Health Dis. 2024;23(1):51. https://doi.org/10.1186/s12944-024-02028-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schünemann H, Hill S, Guyatt G, Akl EA, Ahmed F. The GRADE approach and Bradford Hill’s criteria for causation. J Epidemiol Community Health. 2011;65(5):392–5. https://doi.org/10.1136/jech.2010.119933.

    Article  PubMed  Google Scholar 

  23. Lazzeri C, Valente S, Chiostri M, Attanà P, Mattesini A, Gensini GF. Acute insulin resistance assessed by the homeostatic model assessment in acute coronary syndromes without previously known diabetes. Angiology. 2014;65(6):519–24. https://doi.org/10.1177/000331971348901.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Herget-Rosenthal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 157 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ülger, P., Yildiz, E., Kribben, A. et al. Are Adiponectin and Insulin Resistance Related to Stress Hyperglycaemia in Critically Ill Patients?. Ind J Clin Biochem (2024). https://doi.org/10.1007/s12291-024-01232-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-024-01232-w

Keywords

Navigation