Skip to main content
Log in

Dependence of Seasonal Dynamics in Healthy People’s Circulating Lipids and Carbohydrates on Regional Climate: Meta-Analysis

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

We analyzed the seasonal dynamics of lipid profile, glucose, and insulin in healthy subjects from 29 studies conducted in 23 regions, located in different climate zones ranging from subarctic to tropical. Our meta-analysis showed that people have higher the level of TC (total cholesterol), LDL (low-density lipoprotein), HDL (high-density lipoprotein), FBG (fasting blood glucose) in winter than in summer regardless of gender. Regional climate had a significant impact on the seasonal dynamics of lipid profile and glucose. TC, HDL, FBG seasonal fluctuations were more prominent in a climate that had a marked increase in average monthly atmospheric pressure in winter compared with summer as opposed to a climate where atmospheric pressure did not vary significantly in winter and summer. In a climate with humid winters, TC seasonal changes were significantly greater than in the regions with humid summers, most likely due to LDL seasonal changes, since HDL seasonal dynamics with peaks in winter were more prominent in the regions with humid summers. The level of triglycerides had prominent seasonal dynamics with peak values in winter only in the regions with a large difference in winter and summer air temperatures. The results of our current and prior meta-analysis allow for the conclusion that the seasonal dynamics of circulating lipids and glucose are frequently linked to the seasonal dynamics of thyroid-stimulating hormone and hematocrit. Dependence of the seasonal changes in the biochemical parameters on annual fluctuations in air temperature, atmospheric pressure and relative humidity is more obvious than on photoperiod changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TC:

Total cholesterol

LDL:

Low-density lipoprotein

HDL:

High-density lipoprotein

FBG:

Fasting blood glucose

TG:

Triglycerides

TSH:

Thyroid-stimulating hormone of pituitary

ρO2:

Partial density of oxygen in the air

References

  1. Marti-Soler H, Gubelmann C, Aeschbacher S, Alves L, Bobak M, Bongard V, et al. Seasonality of cardiovascularrisk factors: an analysis including over 230 000 participants in 15 countries. Heart. 2014;100:1517–23. https://doi.org/10.1136/heartjnl-2014-305623.

    Article  CAS  PubMed  Google Scholar 

  2. Turner JB, Kumar A, Koch CA. The effects of indoor and outdoor temperature on metabolic rate and adipose tissue - the Mississippi perspective on the obesity epidemic. Rev Endocr Metab Disord. 2016;17(1):61–71. https://doi.org/10.1007/s11154-016-9358-z.

    Article  CAS  PubMed  Google Scholar 

  3. Patterson CC, Gyürüs E, Rosenbauer J, Cinek O, Neu A, Schober E, et al. Seasonal variation in month of diagnosis in children with type 1 diabetes registered in 23 European centers during 1989–2008: little short-term influence of sunshine hours or average temperature. Pediatr Diabetes. 2015;16(8):573–80. https://doi.org/10.1111/pedi.12227.

    Article  CAS  PubMed  Google Scholar 

  4. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–82. https://doi.org/10.1152/physrev.00030.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Santos-Palacios S, Brugos-Larumbe A, Guillén-Grima F, Galofré JC. A cross-sectional study of the association between circulating TSH level and lipid profile in a large Spanish population. Clin Endocrinol (Oxf). 2013;79(6):874–81. https://doi.org/10.1111/cen.12216.

    Article  CAS  Google Scholar 

  6. Wang F, Tan Y, Wang C, Zhang X, Zhao Y, Song X, et al. Thyroid-stimulating hormone levels within the reference range are associated with serum lipid profiles independent of thyroid hormones. J Clin Endocrinol Metab. 2012;97(8):2724–31. https://doi.org/10.1210/jc.2012-1133.

    Article  CAS  PubMed  Google Scholar 

  7. Wanjia X, Chenggang W, Aihong W, Xiaomei Y, Jiajun Z, Chunxiao Y, et al. A high normal TSH level is associated with an atherogenic lipid profile in euthyroid non-smokers with newly diagnosed asymptomatic coronary heart disease. Lipids Health Dis. 2012;11:44. https://doi.org/10.1186/1476-511X-11-44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laclaustra M, Hurtado-Roca Y, Sendin M, Leon M, Ledesma M, Andres E, et al. Lower-normal TSH is associated with better metabolic risk factors: A cross-sectional study on Spanish men. Nutr Metab Cardiovasc Dis. 2015;25(12):1095–103. https://doi.org/10.1016/j.numecd.2015.09.007.

    Article  CAS  PubMed  Google Scholar 

  9. Kuzmenko NV, Tsyrlin VA, Pliss MG, Galagudza MM. Seasonal variations in levels of human thyroid-stimulating hormone and thyroid hormones: a meta-analysis. Chronobiol Int. 2021;38(3):1–17. https://doi.org/10.1080/07420528.2020.1865394.

    Article  CAS  Google Scholar 

  10. Sarne D. Effects of the Environment, Chemicals and Drugs on Thyroid Function. 2016 Sep 27. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, et al. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000–. https://www.ncbi.nlm.nih.gov/books/NBK285560/

  11. Bjornstad P, Eckel RH. Pathogenesis of lipid disorders in insulin resistance: a brief review. Curr Diab Rep. 2018;18(12):127. https://doi.org/10.1007/s11892-018-1101-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thevis M, Thomas A, Schänzer W. Insulin. Handb Exp Pharmacol. 2010;195:209–26. https://doi.org/10.1007/978-3-540-79088-4_10.

    Article  CAS  Google Scholar 

  13. Geisler CE, Renquist BJ. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones. J Endocrinol. 2017;234(1):R1–21. https://doi.org/10.1530/JOE-16-0513.

    Article  CAS  PubMed  Google Scholar 

  14. Hoffman RP. Sympathetic mechanisms of hypoglycemic counterregulation. Curr Diabetes Rev. 2007;3(3):185–93. https://doi.org/10.2174/157339907781368995.

    Article  CAS  PubMed  Google Scholar 

  15. Maduka IC, Neboh EE, Ufelle SA. The relationship between serum cortisol, adrenaline, blood glucose and lipid profile of undergraduate students under examination stress. Afr Health Sci. 2015;15(1):131–6. https://doi.org/10.4314/ahs.v15i1.18.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Varma VK, Rushing JT, Ettinger WH Jr. High density lipoprotein cholesterol is associated with serum cortisol in older people. J Am Geriatr Soc. 1995;43(12):1345–9. https://doi.org/10.1111/j.1532-5415.1995.tb06612.x.

    Article  CAS  PubMed  Google Scholar 

  17. Coderre L, Srivastava AK, Chiasson JL. Role of glucocorticoid in the regulation of glycogen metabolism in skeletal muscle. Am J Physiol. 1991;260(6 Pt 1):E927–32. https://doi.org/10.1152/ajpendo.1991.260.6.E927.

    Article  CAS  PubMed  Google Scholar 

  18. Oh KJ, Han HS, Kim MJ, Koo SH. Transcriptional regulators of hepatic gluconeogenesis. Arch Pharm Res. 2013;36(2):189–200. https://doi.org/10.1007/s12272-013-0018-5.

    Article  CAS  PubMed  Google Scholar 

  19. de Bruijn R, Romero LM. The role of glucocorticoids in the vertebrate response to weather. Gen Comp Endocrinol. 2018;269:11–32. https://doi.org/10.1016/j.ygcen.2018.07.007.

    Article  CAS  PubMed  Google Scholar 

  20. Goldstein DS, Kopin IJ. Adrenomedullary, adrenocortical, and sympathoneural responses to stressors: a meta-analysis. Endocr Regul. 2008; 42(4):111–9. PMID: 18999898 PMCID: PMC5522726

  21. Greaney JL, Kenney WL, Alexander LM. Sympathetic regulation during thermal stress in human aging and disease. Auton Neurosci. 2016;196:81–90. https://doi.org/10.1016/j.autneu.2015.11.002.

    Article  PubMed  Google Scholar 

  22. Adlercreutz H, Tallqvist G. Variations in the serum total cholesterol and hematocrit values in normal women during the menstrualcycle. Scand J Clin Lab Invest. 1959;11:1–9. https://doi.org/10.3109/00365515909060400.

    Article  CAS  PubMed  Google Scholar 

  23. Lopes GPR, Munhoz MAG, Antonangelo L. Evaluation of relationship between hematocrit and lipid profile in adults. J Bras Patol Med Lab. 2018;54(3):146–52. https://doi.org/10.5935/1676-2444.20180027.

    Article  CAS  Google Scholar 

  24. Tamariz LJ, Young JH, Pankow JS, Yeh HC, Schmidt MI, Astor B, Brancati FL. Blood viscosity and hematocrit as risk factors for type 2 diabetes mellitus: the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol. 2008;168(10):1153–60. https://doi.org/10.1093/aje/kwn243.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kuzmenko NV, Tsyrlin VA, Pliss MG. Seasonal dynamics of red blood parameters in healthy people in regions with different types of climate: a meta-analysis. Izv Atmos Ocean Phys. 2021;57(10):1271–92. https://doi.org/10.1134/S0001433821100078.

    Article  Google Scholar 

  26. Girard-Globa A, Schutz AM. Enlargement of the high density lipoprotein pool in rats by exposure to cold and by feeding a high fat diet. Horm Metab Res. 1981;13(4):214–8. https://doi.org/10.1055/s-2007-1019224.

    Article  CAS  PubMed  Google Scholar 

  27. Madaniyazi L, Guo Y, Williams G, Jaakkola JK, Wu S, Li S. The nonlinear association between outdoor temperature and cholesterol levels, with modifying effect of individual characteristics and behaviors. Int J Biometeorol. 2020;64(3):367–75. https://doi.org/10.1007/s00484-019-01816-9.

    Article  PubMed  Google Scholar 

  28. Dumke CL, Slivka DR, Cuddy JS, Hailes WS, Rose SM, Ruby BC. The Effect of Environmental Temperature on Glucose and Insulin After an Oral Glucose Tolerance Test in Healthy Young Men. Wilderness Environ Med. 2015;26(3):335–42. https://doi.org/10.1016/j.wem.2015.03.002.

    Article  PubMed  Google Scholar 

  29. Hauton D, Richards SB, Egginton S. The role of the liver in lipid metabolism during cold acclimation in non-hibernator rodents. Comp Biochem Physiol B Biochem Mol Biol. 2006;144(3):372–81. https://doi.org/10.1016/j.cbpb.2006.03.013.

    Article  CAS  PubMed  Google Scholar 

  30. Mohammadi-Sartang M, Ghorbani M, Mazloom Z. Effects of melatonin supplementation on blood lipid concentrations: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2018;37(6 Pt A):1943–54. https://doi.org/10.1016/j.clnu.2017.11.003.

    Article  CAS  PubMed  Google Scholar 

  31. Vaughan MK, Brainard GC, Reiter RJ. The influence of natural short photoperiodic and temperature conditions on plasma thyroid hormones and cholesterol in male Syrian hamsters. Int J Biometeorol. 1984;28(3):201–10. https://doi.org/10.1007/BF02187960.

    Article  CAS  PubMed  Google Scholar 

  32. Doosti-Irani A, Ostadmohammadi V, Mirhosseini N, Mansournia MA, Reiter RJ, Kashanian M, et al. The effects of melatonin supplementation on glycemic control: a systematic review and meta-analysis of randomized controlled trials. Horm Metab Res. 2018;50(11):783–90. https://doi.org/10.1055/a-0752-8462.

    Article  CAS  PubMed  Google Scholar 

  33. Wang L, McFadden JW, Yang G, Zhu H, Lian H, Fu T, et al. Effect of melatonin on visceral fat deposition, lipid metabolism and hepatic lipo-metabolic gene expression in male rats. J Anim Physiol Anim Nutr (Berl). 2021;105(4):787–96. https://doi.org/10.1111/jpn.13497.

    Article  CAS  Google Scholar 

  34. Grimes DS, Hindle E, Dyer T. Sunlight, cholesterol and coronary heart disease. QJM. 1996;89(8):579–89. https://doi.org/10.1093/qjmed/89.8.579.

    Article  CAS  PubMed  Google Scholar 

  35. Afzal S, Bojesen SE, Nordestgaard BG. Low 25-hydroxyvitamin D and risk of type 2 diabetes: a prospective cohort study and meta-analysis. Clin Chem. 2013;59(2):381–91. https://doi.org/10.1373/clinchem.2012.193003.

    Article  CAS  PubMed  Google Scholar 

  36. Shephard RJ, Aoyagi Y. Seasonal variations in physical activity and implications for human health. Eur J Appl Physiol. 2009;107(3):251–71. https://doi.org/10.1007/s00421-009-1127-1.

    Article  PubMed  Google Scholar 

  37. Hanson S, Jones A. Is there evidence that walking groups have health benefits? A systematic review and meta-analysis. Br J Sports Med. 2015;49(11):710–5. https://doi.org/10.1136/bjsports-2014-094157.

    Article  PubMed  Google Scholar 

  38. Oja P, Kelly P, Murtagh EM, Murphy MH, Foster C, Titze S. Effects of frequency, intensity, duration and volume of walking interventions on CVD risk factors: a systematic review and meta-regression analysis of randomised controlled trials among inactive healthy adults. Br J Sports Med. 2018;52(12):769–75. https://doi.org/10.1136/bjsports-2017-098558.

    Article  PubMed  Google Scholar 

  39. Fyfe CL, Stewart J, Murison SD, Jackson DM, Rance K, Speakman JR, et al. Evaluating energy intake measurement in free-living subjects: when to record and for how long? Public Health Nutr. 2010;13(2):172–80. https://doi.org/10.1017/S1368980009991443.

    Article  PubMed  Google Scholar 

  40. Ma Y, Olendzki BC, Li W, Hafner AR, Chiriboga D, Hebert JR, et al. Seasonal variation in food intake, physical activity, and body weight in a predominantly overweight population. Eur J Clin Nutr. 2006;60(4):519–28. https://doi.org/10.1038/sj.ejcn.1602346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Imamura F, Micha R, Wu JH, de Oliveira Otto MC, Otite FO, Abioye AI, Mozaffarian D. Effects of Saturated Fat, Polyunsaturated Fat, Monounsaturated Fat, and Carbohydrate on Glucose-Insulin Homeostasis: A Systematic Review and Meta-analysis of Randomised Controlled Feeding Trials. PLoS Med. 2016;13(7): e1002087. https://doi.org/10.1371/journal.pmed.1002087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Te Morenga LA, Howatson AJ, Jones RM, Mann J. Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am J Clin Nutr. 2014;100(1):65–79. https://doi.org/10.3945/ajcn.113.081521.

    Article  CAS  Google Scholar 

  43. Mensink RP, Zock PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77(5):1146–55. https://doi.org/10.1093/ajcn/77.5.1146.

    Article  CAS  PubMed  Google Scholar 

  44. Asbaghi O, Choghakhori R, Abbasnezhad A. Effect of Omega-3 and vitamin E co-supplementation on serum lipids concentrations in overweight patients with metabolic disorders: A systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Syndr. 2019;13(4):2525–31. https://doi.org/10.1016/j.dsx.2019.07.001.

    Article  PubMed  Google Scholar 

  45. Dobson HM, Muir MM, Hume R. The effect of ascorbic acid on the seasonal variations in serum cholesterol levels. Scott Med J. 1984;29(3):176–82. https://doi.org/10.1177/003693308402900308.

    Article  CAS  PubMed  Google Scholar 

  46. Kuzmenko NV, Tsyrlin VA, Pliss MG. Seasonal dynamics of melatonin, prolactin, sex hormones and adrenal hormones in healthy people: a meta-analysis. J Evol Biochem Phys. 2021;57:451–72. https://doi.org/10.1134/S0022093021030029.

    Article  CAS  Google Scholar 

  47. Kuzmenko NV, Tsyrlin VA, Pliss MG, Galagudza MM. Seasonal body weight dynamics in healthy people: a meta-analysis. Hum Physiol. 2021;47(6):676–89. https://doi.org/10.1134/S0362119721060062.

    Article  Google Scholar 

  48. Portaluppi F, Smolensky MH, Touitou Y. Ethics and methods for biological rhythm research on animals and human beings. Chronobiol Int. 2010;27(9–10):1911–29. https://doi.org/10.3109/07420528.2010.516381.

    Article  PubMed  Google Scholar 

  49. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502 (PMID: 4337382).

    Article  CAS  Google Scholar 

  50. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester: Wiley; 2009. p. 421.

    Book  Google Scholar 

  51. Anthanont P, Levine JA, McCrady-Spitzer SK, Jensen MD. Lack of seasonal differences in basal metabolic rate in humans: a cross-sectional study. Horm Metab Res. 2017;49(1):30–5. https://doi.org/10.1055/s-0042-107793.

    Article  CAS  PubMed  Google Scholar 

  52. Boĭko ER, Tkachev AV. Kharakteristika lipidnogo obmena u postoiannykh zhiteleĭ Severa [The characteristics of lipid metabolism in permanent residents of the North]. Fiziol Cheloveka. 1994;20(2):136–42 (PMID: 8206343).

    PubMed  Google Scholar 

  53. Calton EK, Keane KN, Raizel R, Rowlands J, Soares MJ, Newsholme P. Winter to summer change in vitamin D status reduces systemic inflammation and bioenergetic activity of human peripheral blood mononuclear cells. Redox Biol. 2017;12:814–20. https://doi.org/10.1016/j.redox.2017.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Doyle JT, Kinch SH, Brown DF. Seasonal variation in serum cholesterol concentration. J Chron Dis. 1965;18:657–64. https://doi.org/10.1016/0021-9681(65)90067-6.

    Article  CAS  Google Scholar 

  55. Fuller JH, Grainger SL, Jarrett RJ, Keen H. Possible seasonal variation of plasma lipids in a healthy population. Clin Chim Acta. 1974;52(3):305–10. https://doi.org/10.1016/0009-8981(74)90115-6.

    Article  CAS  PubMed  Google Scholar 

  56. Hattori T, Munakata M. Blood pressure measurement under standardized indoor condition may mask seasonal blood pressure variation in men with mildly elevated blood pressure. Clin Exp Hypertens. 2015;37(4):317–22. https://doi.org/10.3109/10641963.2014.960975.

    Article  PubMed  Google Scholar 

  57. Hoffman AA, Nelson WR, Goss FA. Effects of an exercise program on plasma lipids of senior air force officers. Am J Cardiol. 1967;20(4):516–24. https://doi.org/10.1016/0002-9149(67)90029-x.

    Article  CAS  PubMed  Google Scholar 

  58. Jarrett RJ, Murrells TJ, Shipley MJ, Hall T. Screening blood glucose values: effects of season and time of day. Diabetologia. 1984;27(6):574–7. https://doi.org/10.1007/BF00276970.

    Article  CAS  PubMed  Google Scholar 

  59. Kamezaki F, Sonoda S, Tomotsune Y, Yunaka H, Otsuji Y. Seasonal variation in serum lipid levels in Japanese workers. J Atheroscler Thromb. 2010;17(6):638–43. https://doi.org/10.5551/jat.3566.

    Article  CAS  PubMed  Google Scholar 

  60. Kamezaki F, Sonoda S, Tomotsune Y, Yunaka H, Otsuji Y. Seasonal variation in metabolic syndrome prevalence. Hypertens Res. 2010;33(6):568–72. https://doi.org/10.1038/hr.2010.32.

    Article  PubMed  Google Scholar 

  61. Kochan TI, Eseva TV. Seasonal dynamics of clinically significant metabolic parameters in northern residents of different age. Bull Exp Biol Med. 2009;147(6):757–9. https://doi.org/10.1007/s10517-009-0615-y.

    Article  CAS  PubMed  Google Scholar 

  62. Koono N. Reciprocal changes in serum concentrations of triiodothyronine and reverse triiodothyronine between summer and winter in normal adult men. Endocrinol Jpn. 1980;27(4):471–6. https://doi.org/10.1507/endocrj1954.27.471.

    Article  CAS  PubMed  Google Scholar 

  63. Kreindl C, Olivares M, Brito A, Araya M, Pizarro F. Variación estacional del perfil lipídico en adultos aparentemente sanos de Santiago, Chile [Seasonal variations in the lipid profile of apparently healthy young adults living in Santiago, Chile]. Arch Latinoam Nutr. 2014;64(3):145–52 (PMID: 26137790).

    CAS  PubMed  Google Scholar 

  64. Kristal-Boneh E, Harari G, Green MS. Circannual variations in blood cholesterol levels. Chronobiol Int. 1993;10(1):37–42. https://doi.org/10.3109/07420529309064480.

    Article  CAS  PubMed  Google Scholar 

  65. Kuroshima A, Doi K, Ohno T. Seasonal variation of plasma glucagon concentrations in men. Jpn J Physiol. 1979;29(6):661–8. https://doi.org/10.2170/jjphysiol.29.661.

    Article  CAS  PubMed  Google Scholar 

  66. Levy SB, Leonard WR, Tarskaia LA, Klimova TM, Fedorova VI, Baltakhinova ME, Josh SJ. Lifestyle mediates seasonal changes in metabolic health among the yakut (sakha) of northeastern siberia. Am J Hum Biol. 2016;28(6):868–78. https://doi.org/10.1002/ajhb.22879.

    Article  PubMed  Google Scholar 

  67. Lucas JA, Bolland MJ, Grey AB, Ames RW, Mason BH, Horne AM, et al. Determinants of vitamin D status in older women living in a subtropical climate. Osteoporos Int. 2005;16(12):1641–8. https://doi.org/10.1007/s00198-005-1888-2.

    Article  CAS  PubMed  Google Scholar 

  68. Murciano Revert J, Martínez-Lahuerta JJ, Aleixandre Porcar L. Seasonal change in blood concentration of uric acid and its potential clinical implications. Aten Primaria. 2000;26(7):468–71. https://doi.org/10.1016/s0212-6567(00)78705-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ockene IS, Chiriboga DE, Stanek EJ 3rd, Harmatz MG, Nicolosi R, Saperia G, et al. Seasonal variation in serum cholesterol levels: treatment implications and possible mechanisms. Arch Intern Med. 2004;164(8):863–70. https://doi.org/10.1001/archinte.164.8.863.

    Article  CAS  PubMed  Google Scholar 

  70. Otto C, Donner MG, Schwandt P, Richter WO. Seasonal variations of hemorheological and lipid parameters in middle-aged healthy subjects. Clin Chim Acta. 1996;256(1):87–94. https://doi.org/10.1016/s0009-8981(96)06414-5.

    Article  CAS  PubMed  Google Scholar 

  71. Pham DD, Lee JH, Hong KH, Jung YJ, Kim SJ, Leem CH. Seasonal effects on resting energy expenditure are dependent on age and percent body fat. Clin Nutr. 2020;39(4):1276–83. https://doi.org/10.1016/j.clnu.2019.05.021.

    Article  PubMed  Google Scholar 

  72. Sasaki J, Kumagae G, Sata T, Ikeda M, Tsutsumi S, Arakawa K. Seasonal variation of serum high density lipoprotein cholesterol levels in men. Atherosclerosis. 1983;48(2):167–72. https://doi.org/10.1016/0021-9150(83)90103-x.

    Article  CAS  PubMed  Google Scholar 

  73. Shahar DR, Froom P, Harari G, Yerushalmi N, Lubin F, Kristal-Boneh E. Changes in dietary intake account for seasonal changes in cardiovascular disease risk factors. Eur J Clin Nutr. 1999;53(5):395–400. https://doi.org/10.1038/sj.ejcn.1600761.

    Article  CAS  PubMed  Google Scholar 

  74. Solonin IuG, Markov AL, Boĭko ER, Potolitsyna NN, Parshukova OI. Functional indices of the participants of the satellite experiments of the “Mars-500” project in the north of Russia in different seasons of a year. Fiziol Cheloveka. 2014;40(6):58–66. https://doi.org/10.1134/S0362119714050156.

    Article  CAS  PubMed  Google Scholar 

  75. Suarez L, Barrett-Connor E. Seasonal variation in fasting plasma glucose levels in man. Diabetologia. 1982;22(4):250–3. https://doi.org/10.1007/BF00281300.

    Article  CAS  PubMed  Google Scholar 

  76. Sung KC. Seasonal variation of C-reactive protein in apparently healthy Koreans. Int J Cardiol. 2006;107(3):338–42. https://doi.org/10.1016/j.ijcard.2005.03.045.

    Article  PubMed  Google Scholar 

  77. Walker BR, Best R, Noon JP, Watt GC, Webb DJ. Seasonal variation in glucocorticoid activity in healthy men. J Clin Endocrinol Metab. 1997;82(12):4015–9. https://doi.org/10.1210/jcem.82.12.4430.

    Article  CAS  PubMed  Google Scholar 

  78. Wood AD, Secombes KR, Thies F, Aucott L, Black AJ, Mavroeidi A, et al. Vitamin D3 supplementation has no effect on conventional cardiovascular risk factors: a parallel-group, double-blind, placebo-controlled RCT. J Clin Endocrinol Metab. 2012;97(10):3557–68. https://doi.org/10.1210/jc.2012-2126.

    Article  CAS  PubMed  Google Scholar 

  79. Cunliffe WJ, Burton JL, Shuster S. The effect of local temperature variations on the sebum excretion rate. Br J Dermatol. 1970;83(6):650–4. https://doi.org/10.1111/j.1365-2133.1970.tb15759.x.

    Article  CAS  PubMed  Google Scholar 

  80. De Luca C, Valacchi G. Surface lipids as multifunctional mediators of skin responses to environmental stimuli. Mediators Inflamm. 2010. https://doi.org/10.1155/2010/321494.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Moyen NE, Ellis CL, Ciccone AB, Thurston TS, Cochrane KC, Brown LE, et al. Increasing relative humidity impacts low-intensity exercise in the heat. Aviat Space Environ Med. 2014;85(2):112–9. https://doi.org/10.3357/asem.3787.2014.

    Article  PubMed  Google Scholar 

  82. Moyen NE, Mündel T, Du Bois AM, Ciccone AB, Morton RH, Judelson DA. Increasing humidity affects thermoregulation during low-intensity exercise in women. Aviat Space Environ Med. 2014;85(9):905–11. https://doi.org/10.3357/ASEM.3993.2014.

    Article  PubMed  Google Scholar 

  83. Keatinge WR, Coleshaw SR, Easton JC, Cotter F, Mattock MB, Chelliah R. Increased platelet and red cell counts, blood viscosity, and plasma cholesterol levels during heat stress, and mortality from coronary and cerebral thrombosis. Am J Med. 1986;81(5):795–800. https://doi.org/10.1016/0002-9343(86)90348-7.

    Article  CAS  PubMed  Google Scholar 

  84. Fathzadeh M, Seyedna Y, Khazali H, Sheidai M, Farhud DD. Epidemiological study of T4, T3 and TSH mean concentrations in four Iranian populations. Iranian J Publ Health. 2005; 34(1):74–79. http://ijph.tums.ac.ir/index.php/ijph/article/view/1884

  85. Surks MI. Effect of thyrotropin on thyroidal iodine metabolism during hypoxia. Am J Physiol. 1969;216(2):436–9. https://doi.org/10.1152/ajplegacy.1969.216.2.436.

    Article  CAS  PubMed  Google Scholar 

  86. Ruíz-Argüelles GJ, Sánchez-Medal L, Loría A, Piedras J, Córdova MS. Red cell indices in normal adults residing at altitude from sea level to 2670 meters. Am J Hematol. 1980;8(3):265–71. https://doi.org/10.1002/ajh.2830080304.

    Article  PubMed  Google Scholar 

  87. Wee J, Climstein M. Hypoxic training: clinical benefits on cardiometabolic risk factors. J Sci Med Sport. 2015;18(1):56–61. https://doi.org/10.1016/j.jsams.2013.10.247.

    Article  PubMed  Google Scholar 

  88. Woolcott OO, Ader M, Bergman RN. Glucose homeostasis during short-term and prolonged exposure to high altitudes. Endocr Rev. 2015;36(2):149–73. https://doi.org/10.1210/er.2014-1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ginzburg AS, Vinogradova AA, Fedorova EI. Content of oxygen in the atmosphere over large cities and respiratory problems. Izv Atmos Ocean Phys. 2014;50(8):782–92. https://doi.org/10.1134/S0001433814080040.

    Article  Google Scholar 

  90. Sharma S, Hashmi MF. Partial Pressure Of Oxygen. 2021 Sep 30. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. https://www.ncbi.nlm.nih.gov/books/NBK493219/

  91. Kuzmenko NV, Galagudza MM. Dependence of seasonal dynamics of hemorrhagic and ischemic strokes on the climate of a region: A meta-analysis. Int J Stroke. 2022;17(2):226–35. https://doi.org/10.1177/17474930211006296.

    Article  CAS  PubMed  Google Scholar 

  92. Kuzmenko NV, Tsyrlin VA, Pliss MG, Galagudza MM. Seasonal fluctuations of blood pressure and heart rate in healthy people: a meta-analysis of panel studies. Hum Physiol. 2020;48(3):313–27. https://doi.org/10.1134/S0362119722030100.

    Article  Google Scholar 

  93. Palmisano BT, Zhu L, Eckel RH, Stafford JM. Sex differences in lipid and lipoprotein metabolism. Mol Metab. 2018;15:45–55. https://doi.org/10.1016/j.molmet.2018.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Eades CE, France EF, Evans JM. Prevalence of impaired glucose regulation in Europe: a meta-analysis. Eur J Public Health. 2016;26(4):699–706. https://doi.org/10.1093/eurpub/ckw085.

    Article  PubMed  Google Scholar 

  95. Faerch K, Borch-Johnsen K, Vaag A, Jørgensen T, Witte DR. Sex differences in glucose levels: a consequence of physiology or methodological convenience? The Inter99 study. Diabetologia. 2010;53(5):858–65. https://doi.org/10.1007/s00125-010-1673-4.

    Article  CAS  PubMed  Google Scholar 

  96. Hosseini M, Yousefifard M, Taslimi S, Sohanaki H, Nourijelyani K, Asgari F, et al. Trend of blood cholesterol level in Iran: results of four national surveys during 1991–2008. Acta Med Iran. 2013; 51(9):642–51. https://acta.tums.ac.ir/index.php/acta/article/view/4360

  97. Lohner S, Fekete K, Marosvölgyi T, Decsi T. Gender differences in the long-chain polyunsaturated fatty acid status: systematic review of 51 publications. Ann Nutr Metab. 2013;62(2):98–112. https://doi.org/10.1159/000345599.

    Article  CAS  PubMed  Google Scholar 

  98. Ko GT, Wai HP, Tang JS. Effects of age on plasma glucose levels in non-diabetic Hong Kong Chinese. Croat Med J. 2006; 47(5):709–13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080461/

  99. Umishio W, Ikaga T, Kario K, Fujino Y, Suzuki M, Hoshi T, et al. on beharf of the smart wellness housing survey group association between indoor temperature in winter and serum cholesterol: a cross-sectional analysis of the smart wellness housing survey in Japan. J Atheroscler Thromb. 2022. https://doi.org/10.5551/jat.63494.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors received no financial support for research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kuzmenko.

Ethics declarations

Conflict of interest

The authors declare that there is no potential conflict of interest regarding research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1549 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmenko, N.V., Shchegolev, B.F. Dependence of Seasonal Dynamics in Healthy People’s Circulating Lipids and Carbohydrates on Regional Climate: Meta-Analysis. Ind J Clin Biochem 37, 381–398 (2022). https://doi.org/10.1007/s12291-022-01064-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-022-01064-6

Keywords

Navigation