Skip to main content
Log in

Numerical and experimental response of FSSW of AA5052-H32/epoxy/AA5052-H32 sandwich sheets with varying core properties

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The present work aims to assess the joint behaviour of friction stir spot welded sandwich sheets by changing the quality of the epoxy core layer. Lab scale experiments and numerical simulations are conducted for the purpose. The core property is altered by varying hardener to resin (h/r) ratio within a suitable range. Joint mechanical performance and joint characterization are evaluated from experiments. Cohesive zone modelling has been incorporated in Abaqus to monitor the hook formation and interface delamination, which is not performed until now in literature. The core quality influences the behaviour of sandwich sheet and hook geometry significantly. Desired h/r ratio is also evaluated from such results, and FSSW is found advantageous at some h/r ratios. The failure mode is independent of h/r ratio and loading conditions. The final joint shape and hook geometry obtained from FE simulations agree well with that of from experiments. Cohesive zone modelling helped in accurate prediction of delamination, and without it, the hook geometry and plastic energy dissipation predictions are approximated. It has been suggested to incorporate cohesive zone model during FE simulations to have a realistic prediction of sandwich joint performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Riel FJ (1970) Sandwich structure – an evolving concept. In: National Aeronautic and Space Engineering and Manufacturing Meeting. SAE International, pp. 1–8

  2. Mohr D, Wierzbicki T (2004) Crashworthiness of thin ultra-light stainless steel Sandwich sheets: from the Design of Core Materials to structural applications

  3. Salonitis K, Stavropoulos P, Fysikopoulos A, Chryssolouris G (2013) CO2 laser butt-welding of steel sandwich sheet composites. Int J Adv Manuf Technol 69(1-4):245–256. https://doi.org/10.1007/s00170-013-5025-7

    Article  Google Scholar 

  4. Gower HL, Richardson IM, Pieters RRGM (2006) Pulsed laser welding of Steelite, a steel polypropylene laminate. Sci Technol Weld Join 11(5):593–599. https://doi.org/10.1179/174329306X122802

    Article  Google Scholar 

  5. Gower HL, Pieters RRGM, Richardson IM (2006) Pulsed laser welding of metal-polymer sandwich materials using pulse shaping. J Laser Appl 18(1):35–41. https://doi.org/10.2351/1.2080307

    Article  Google Scholar 

  6. Pickin CG, Young K, Tuersley I (2007) Joining of lightweight sandwich sheets to aluminium using self-pierce riveting. Mater Des 28(8):2361–2365. https://doi.org/10.1016/j.matdes.2006.08.003

    Article  Google Scholar 

  7. Balle F, Wagner G, Eifler D (2007) Ultrasonic spot welding of aluminum sheet/carbon fiber reinforced polymer – joints. Materwiss Werksttech 38(11):934–938. https://doi.org/10.1002/mawe.200700212

    Article  Google Scholar 

  8. Rana PK, Narayanan RG, Kailas SV (2018) Effect of rotational speed on friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets. J Mater Process Technol 252:511–523. https://doi.org/10.1016/j.jmatprotec.2017.10.016

    Article  Google Scholar 

  9. Rana PK, Narayanan RG, Kailas SV (2019) Influence of tool plunge depth during friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 Sandwich sheets. In: Dixit SU, Narayanan GR (eds) Strengthening and Joining by Plastic Deformation. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore, pp 95–121

    Chapter  Google Scholar 

  10. Rana PK, Narayanan RG, Kailas SV (2019) Friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets at varying plunge speeds. Thin-Walled Struct 138:415–429. https://doi.org/10.1016/j.tws.2019.02.016

    Article  Google Scholar 

  11. Sakurai T (2008) The latest trends in aluminium alloy sheets for automotive body panels. Kobelco Technol Rev 28:22–28

    Google Scholar 

  12. Muraoka Y, Miyaoka H (1993) Development of an all-aluminum automotive body. J Mater Process Technol 38(4):655–674. https://doi.org/10.1016/0924-0136(93)90042-5

    Article  Google Scholar 

  13. Logesh K, Bupesh RV, Krishnaraj C (2018) Stretch formability behaviour of glass fibre reinforced Nanoclay on Fiber metal laminated composites. Int J Veh Struct Syst 10(2):115–121. https://doi.org/10.4273/ijvss.10.2.08

    Article  Google Scholar 

  14. Parsa MH, Ettehad M, Matin PH, Al Ahkami SN (2010) Experimental and numerical determination of limiting drawing ratio of Al3105-polypropylene-Al3105 Sandwich sheets. J Eng Mater Technol 132(3):0310041–03100411. https://doi.org/10.1115/1.4001264

    Article  Google Scholar 

  15. Liu J, Liu W, Xue W (2013) Forming limit diagram prediction of AA5052/polyethylene/AA5052 sandwich sheets. Mater Des 46:112–120. https://doi.org/10.1016/j.matdes.2012.09.057

    Article  Google Scholar 

  16. Aslan M, Özturk H, Demirkir C (2019) Investigation of thermal conductivity of wood Sandwich panels with Aluminium and polypropylene core. J Anatol Environ Anim Sci 4:647–650. https://doi.org/10.35229/jaes.640624

    Article  Google Scholar 

  17. Russig C, Bambach M, Hirt G, Holtmann N (2014) Shot peen forming of fiber metal laminates on the example of GLARE®. Int J Mater Form 7(4):425–438. https://doi.org/10.1007/s12289-013-1137-8

    Article  Google Scholar 

  18. Satheeshkumar V, Narayanan RG (2015) In-plane plane strain formability of adhesive-bonded steel sheets: influence of adhesive properties. Int J Adv Manuf Technol 76(5-8):993–1009. https://doi.org/10.1007/s00170-014-6335-0

    Article  Google Scholar 

  19. Bagheri B, Abbasi M, Hamzeloo R (2020) The investigation into vibration effect on microstructure and mechanical characteristics of friction stir spot vibration welded aluminum: simulation and experiment. Proc Inst Mech Eng Part C J Mech Eng Sci 234(9):1809–1822. https://doi.org/10.1177/0954406219900194

    Article  Google Scholar 

  20. Awang M, Mucino VH (2010) Energy generation during friction stir spot welding (FSSW) of Al 6061-T6 plates. Mater Manuf Process 25(1-3):167–174. https://doi.org/10.1080/10426910903206758

    Article  Google Scholar 

  21. Hirasawa S, Badarinarayan H, Okamoto K, Tomimura T, Kawanami T (2010) Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method. J Mater Process Technol 210(11). https://doi.org/10.1016/j.jmatprotec.2010.04.003

  22. Fanelli P, Vivio F, Vullo V (2012) Experimental and numerical characterization of friction stir spot welded joints. Eng Fract Mech 81:17–25. https://doi.org/10.1016/j.engfracmech.2011.07.009

    Article  Google Scholar 

  23. Jedrasiak P, Shercliff HR (2019) Small strain finite element modelling of friction stir spot welding of Al and mg alloys. J Mater Process Technol 263:207–222. https://doi.org/10.1016/j.jmatprotec.2018.07.031

    Article  Google Scholar 

  24. Park H, Kim S-J, Lee J, Kim JH, Kim D (2020) Delamination behavior analysis of steel/polymer/steel high-strength laminated sheets in a V-die bending test. Int J Mech Sci 173:105430. https://doi.org/10.1016/j.ijmecsci.2020.105430

    Article  Google Scholar 

  25. Akour SN, Maaitah HZ (2010) Effect of core material stiffness on sandwich panel behavior beyond the yield limit. In: WCE 2010 – World Congress on Engineering 2010

  26. Parsa MH, Ettehad M, Al Ahkami SN (2009) FLD determination of AL 3105/polypropylene/AL 3105 sandwich sheet using numerical calculation and experimental investigations. Int J Mater Form 2(S1):407–410. https://doi.org/10.1007/s12289-009-0502-0

    Article  Google Scholar 

  27. Satheeshkumar V, Narayanan RG (2014) Investigation on the influence of adhesive properties on the formability of adhesive-bonded steel sheets. Proc Inst Mech Eng Part C J Mech Eng Sci 228(3):405–425. https://doi.org/10.1177/0954406213488727

    Article  Google Scholar 

  28. Jang J, Sung M, Han S, Yu W-R (2017) Prediction of delamination of steel-polymer composites using cohesive zone model and peeling tests. Compos Struct 160:118–127. https://doi.org/10.1016/j.compstruct.2016.10.025

    Article  Google Scholar 

  29. Liu J, Liu W, Wang J (2012) Influence of interfacial adhesion strength on formability of AA5052/polyethylene/AA5052 sandwich sheet. Trans Nonferrous Met Soc China 22:s395–s401. https://doi.org/10.1016/S1003-6326(12)61737-3

    Article  Google Scholar 

  30. Stigh U, Alfredsson KS, Andersson T, Biel A, Carlberger T, Salomonsson K (2010) Some aspects of cohesive models and modelling with special application to strength of adhesive layers. Int J Fract 165(2):149–162. https://doi.org/10.1007/s10704-010-9458-9

    Article  MATH  Google Scholar 

  31. Salomonsson K, Stigh U (2009) Influence of root curvature on the fracture energy of adhesive layers. Eng Fract Mech 76(13):2025–2038. https://doi.org/10.1016/j.engfracmech.2009.05.010

    Article  Google Scholar 

  32. Davila C, Camanho P, de Moura M (2001) Mixed-mode decohesion elements for analyses of progressive delamination. In: 19th AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, Reston, Virigina

  33. Camanho PP, Davila CG, de Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37(16):1415–1438. https://doi.org/10.1177/0021998303034505

    Article  Google Scholar 

  34. Kukreja G, Narayanan RG (2019) Forming of adhesive-bonded Sandwich sheets with a rubber pad. Metall Mater Trans A 50(5). https://doi.org/10.1007/s11661-019-05168-2

  35. Gustafson PA, Waas AM (2009) The influence of adhesive constitutive parameters in cohesive zone finite element models of adhesively bonded joints. Int J Solids Struct 46(10):2201–2215. https://doi.org/10.1016/j.ijsolstr.2008.11.016

    Article  MATH  Google Scholar 

  36. Azevedo JCS, Campilho RDSG, da Silva FJG, Faneco TMS, Lopes RM (2015) Cohesive law estimation of adhesive joints in mode II condition. Theor Appl Fract Mech 80:143–154. https://doi.org/10.1016/j.tafmec.2015.09.007

    Article  Google Scholar 

  37. André A, Haghani R, Biel A (2012) Application of fracture mechanics to predict the failure load of adhesive joints used to bond CFRP laminates to steel members. Constr Build Mater 27(1):331–340. https://doi.org/10.1016/j.conbuildmat.2011.07.040

    Article  Google Scholar 

  38. Dai G, Mishnaevsky L (2013) Damage evolution in nanoclay-reinforced polymers: a three-dimensional computational study. Compos Sci Technol 74:67–77. https://doi.org/10.1016/j.compscitech.2012.10.003

    Article  Google Scholar 

  39. Chen J, Ravey E, Hallett S, Wisnom M, Grassi M (2009) Prediction of delamination in braided composite T-piece specimens. Compos Sci Technol 69(14):2363–2367. https://doi.org/10.1016/j.compscitech.2009.01.027

    Article  Google Scholar 

  40. Molnár G, Gravouil A (2017) 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elem Anal Des 130:27–38. https://doi.org/10.1016/j.finel.2017.03.002

    Article  Google Scholar 

  41. Imran M, Szyndler J, Afzal MJ, Bambach M (2020) Dynamic recrystallization-dependent damage modeling during hot forming. Int J Damage Mech 29(2):335–363. https://doi.org/10.1177/1056789519848477

    Article  Google Scholar 

  42. Chu Q, Yang XW, Li WY, Vairis A, Wang WB (2018) Numerical analysis of material flow in the probeless friction stir spot welding based on coupled Eulerian-Lagrangian approach. J Manuf Process 36:181–187. https://doi.org/10.1016/j.jmapro.2018.10.013

    Article  Google Scholar 

  43. Zhu XK, Chao YJ (2002) Effects of temperature-dependent material properties on welding simulation. Comput Struct 80(11):967–976. https://doi.org/10.1016/S0045-7949(02)00040-8

    Article  Google Scholar 

  44. Kim D, Badarinarayan H, Ryu I, Kim JH, Kim C, Okamoto K, Wagoner RH, Chung K (2010) Numerical simulation of friction stir spot welding process for aluminum alloys. Met Mater Int 16(2):323–332. https://doi.org/10.1007/s12540-010-0425-9

    Article  MATH  Google Scholar 

  45. Kim D, Badarinarayan H, Kim JH, Kim C, Okamoto K, Wagoner RH, Chung K (2010) Numerical simulation of friction stir butt welding process for AA5083-H18 sheets. Eur J Mech - A/Solids 29(2):204–215. https://doi.org/10.1016/j.euromechsol.2009.10.006

    Article  MATH  Google Scholar 

  46. Bentouhami A (2018) Experimental and numerical analysis of behavior of honeycomb sandwiches panels subjected to impact. Ferhat Abbas University, Algeria

    Google Scholar 

  47. Awang M (2007) Simulation of friction stir spot welding (FSSW) process: study of friction phenomena. College of Engineering and Mineral Resources at West Virginia University

  48. Levanger H (2012) Simulating ductile fracture in steel using the finite element method: comparison of two models for describing local instability due to ductile fracture. University of Oslo Norway, Oslo

    Google Scholar 

  49. (2014) Abaqus Documentation. In: Simulia, Abaqus 6.14, Dassault Systèmes, Abaqus Anal. User’s Manual, 24.2.3

  50. Rana PK, Narayanan RG, Kailas S V. (2016) Influence of rotational speed on the friction stir spot welding of polymer Core Sandwich sheets. In: 6th International & 27th All India Manufacturing Technology, Design and Research Conference (AIMTDR-2016). pp 926–930

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ganesh Narayanan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 17510 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, P.K., Narayanan, R.G. Numerical and experimental response of FSSW of AA5052-H32/epoxy/AA5052-H32 sandwich sheets with varying core properties. Int J Mater Form 14, 1297–1317 (2021). https://doi.org/10.1007/s12289-020-01596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-020-01596-3

Keywords

Navigation