Skip to main content
Log in

A new criterion for preform design of H-shaped hot die forging based on shape complexity factor

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In this paper, a new criterion is proposed in order to determine the necessity of preform steps for axisymmetric H-shaped parts in multi-stage hot forging based on shape complexity factor. The proposed geometrical based criterion was implemented in several examples using finite element method and experimental tests to verify the presented criterion. Finally, in comparison with the existing criteria, results show that the proposed criterion is in excellent agreement with experimental results in order to estimate the optimum number of preform steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Altan T, Ngaile G, Shen G (2004) Cold and hot forging fundamentals and application. ASM International Press

  2. Lee SR, Lee YK, Park CH, Yang DY (2002) A new method of preform design in hot forging by using electric field theory. Int J Mech Sci 44:773–792. doi:10.1016/S0020-7403(02)00003-6

    Article  MATH  Google Scholar 

  3. Biglari FR, O’Dowd NP, Fenner RT (1998) Optimum design of forging dies using fuzzy logic in conjunction with the backward deformation method. Int J Mach Tools Manuf 38:981–1000. doi:10.1016/S0890-6955(97)00026-6

    Article  Google Scholar 

  4. Park JJ, Rebelo N, Kobayashi S (1983) A new approach to preform design in metal forming with the finite element method. Int J Mach Tool D R 23(1):71–79. doi:10.1016/0020-7357(83)90008-2

    Article  Google Scholar 

  5. Badrinarayanan S, Zabaras N, Constantinescu A (1995) Preform design in metal forming. In: Shen SF, Dawson PR (eds) Proceeding of the 5th international conference on numerical methods in industrial forming process. Balkema AA, Rotterdam, pp 533–538

    Google Scholar 

  6. Brukhanov A, Rebelsky A (1962) Hot closed die forging- designing and calculation of dies. Gntiml, Moscow

    Google Scholar 

  7. Chamouard A (1964) Eslampage et forge. Dound, Paris

    Google Scholar 

  8. Thomas GB (1980) Forging handbook, vol 2. Die Design, DFRA Manual

    Google Scholar 

  9. Tomov B (1999) A new shape complexity factor. J Mater Process Technol 92-93:439–443. doi:10.1016/S0924-0136(99)00167-3

    Article  Google Scholar 

  10. Tomov B, Radev R (2004) An example of determination of preforming steps in hot die forging. J Mater Process Technol 157–158:617–619. doi:10.1016/j.jmatprotec.2004.07.123

    Article  Google Scholar 

  11. Tomov B, Radev R (2010) Shape complexity factor for closed die forging. Int J Mater Form 3:319–322. doi:10.1007/s12289-010-0771-7

    Article  Google Scholar 

  12. Zhao G, Wright E, Grandhi RV (1995) Forging preform design with shape complexity control in simulating backward deformation. Int J Mach Tools Manuf 35:1225–1239. doi:10.1016/0890-6955(94)00117-3

    Article  Google Scholar 

  13. Schey JA (2000) Introduction to manufacturing processes, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  14. Teterin GP, Tarnovsky IJ, Chechik AA (1966) Criterion of complexity of the configuration of forgings. Kuznechno-Shtanmpovochnoe Proizvodstvo 7:6–8

    Google Scholar 

  15. Kienzle O, Spies K (1957) The design of the intermediate steps for forging. Werkstattstechnik und Maschinenbau 47:175–181

    Google Scholar 

  16. Hosseini-Ara R, Poursina M, Golastanian H (2007) A new definition of shape complexity factor in forging. AIP Conference Proceedings 907(1):487–492. doi:10.1063/1.2729560

    Google Scholar 

  17. Chu E, Im YT, Kim N, Lee J (1995) Process sequence design of large axisymmetric forging product. AISI 4130 in nozzle type. J Mater Process Technol 48(1–4):143–149

    Article  Google Scholar 

  18. Kim HY, Kim JJ, Kim N (1994) Physical and numerical modeling of hot closed-die forging to reduce forging load and die wear. J Mater Process Technol 42:401–420. doi:10.1016/0924-0136(94)90146-5

    Article  Google Scholar 

  19. Misiolek WZ (1996) Material physical response in the extrusion process. J Mater Process Technol 60(1–3):117–124. doi:10.1016/0924-0136(96)02316-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Hosseini-Ara.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Ara, R., Yavari, P. A new criterion for preform design of H-shaped hot die forging based on shape complexity factor. Int J Mater Form 11, 233–238 (2018). https://doi.org/10.1007/s12289-017-1345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-017-1345-8

Keywords

Navigation