Skip to main content
Log in

A two-pronged approach for springback variability assessment using sparse polynomial chaos expansion and multi-level simulations

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In this study, we show that stochastic analysis of metal forming process requires both a high precision and low cost numerical models in order to take into account very small perturbations on inputs (physical as well as process parameters) and to allow for numerous repeated analysis in a reasonable time. To this end, an original semi-analytical model dedicated to plain strain deep drawing based on a Bending-Under-Tension numerical model (B-U-T model) is used to accurately predict the influence of small random perturbations around a nominal solution estimated with a full scale Finite Element Model (FEM). We introduce a custom sparse variant of the Polynomial Chaos Expansion (PCE) to model the propagation of uncertainties through this model at low computational cost. Next, we apply this methodology to the deep drawing process of U-shaped metal sheet considering up to 8 random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Papeleux L, Ponthot J (2002) Finite element simulation of springback in sheet metal forming. J Mater Process Technol 125–126:785–791

    Article  Google Scholar 

  2. Kleiber M, Rojek J, Stochi R (2002) Reliability assessment for sheet metal forming operations. Comput Methods Appl Mech Eng 191:4511–4532

    Article  MATH  Google Scholar 

  3. de Souza T, Rolfe B (2008) Multivariate modelling of variability in sheet metal forming. J Mater Process Technol 203:1–12

    Article  Google Scholar 

  4. Naceur H, Delaméziere A, Batoz J, Guo C, Knopf–Lenoir C (2004) Some improvement on the optimum process design in deep drawing using the inverse approach. J Mater Process Technol 146:250–262

    Article  Google Scholar 

  5. Breitkopf P, Naceur H, Villon P (2005) Moving least squares response surface approximation: formulation and metal forming applications. Comput Struct 83:1411–1428

    Article  Google Scholar 

  6. Kleiber M, Breitkopf P (1993) Finite elements in structural mechanics: an introduction with Pascal programs for micro-computers. Ellis Horwood

  7. Meinders T, Burchitz I, Bonte M, Lingbeek R (2008) Numerical product design: Springback prediction, compensation and optimization. Int J Mach Tools Manuf 48(5):499–514

    Article  Google Scholar 

  8. Radi B, El Hami A (2007) Reliability analysis of the metal forming process. Math Comput Model 45:431–439

    Article  MATH  MathSciNet  Google Scholar 

  9. Jansson T, Nilsson L, Moshfegh R (2008) Reliability analysis of a sheet metal forming process using monte carlo analysis and metamodels. J Mater Process Technol 202:255–268

    Article  Google Scholar 

  10. Donglai W, Zhenshan C, Jun C (2007) Optimization and tolerance prediction of sheet metal forming process using response surface model. Comput Mater Sci 42:228–233

    Article  Google Scholar 

  11. Blatman G, Sudret B (2011) Adaptive sparse polynomial chaso expansion based on least angle regression. J Comput Phys 230:2345–2367

    Article  MATH  MathSciNet  Google Scholar 

  12. Ghanem R, Spanos PD (1991) Spectral stochastic finite-element formulation for reliability analysis. J Eng Mech 117(10):2351–2372

    Article  Google Scholar 

  13. Sudret B, Der Kiureghian A (2000) Stochastic finite elements methods and reliability- a state of the art. tech. rep. Department of civil and environmental engineering

  14. Ghanem R, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  15. Cameron R, Martin W (1944) Transformations of wiener integrals under translations. Ann Math 45(2):386–396

    Article  MATH  MathSciNet  Google Scholar 

  16. Xiu D (2009) Fast numerical methods for stochastic computations: a review. Commun Comput Phys 5:242–272

    MathSciNet  Google Scholar 

  17. Berveiller M, Sudret B, Lemaire M (2006) Stochastic finite element: a non intrusive approach by regression. Rev Eur Méc Numér 15:81–92

    MATH  Google Scholar 

  18. Makinouchi A, Nakamachi E, Onate E, Wagoner R (eds) (1993) Numisheet’93 2nd international conference, numerical simulation of 3-D sheet metal forming process-verification of simulation with experiment, Riken Tokyo

  19. Hibbit D, Karlsson B, Sorensen P. ABAQUS Example problems, vol 1, version 6.7. Dassault Système

  20. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. In: Proc R London, vol 193, pp 281–297

  21. Le Quilliec G, Breitkopf P, Roelandt J, Juillard P (2013) Semi-analytical approach for plane strain sheet metal forming using a bending-under-tension numerical model. Int J Mater Form. doi:10.1007/s12289-012-1122-7

    Google Scholar 

  22. Hastie RT, Tibshirani J, Friedman G (2009) The elements of statistical learning, data mining, inference and prediction, Springer

  23. Hesterberg T, Choi N, Meier L, Fraley C (2008) Least angle and l 1 penalized regression: a review. Stat Surv 2:61–93

    Article  MATH  MathSciNet  Google Scholar 

  24. Efron B, Hastie T, Johnstone I, Tibsirani T (2004) Least angle regression. Ann Stat 32(2):407–451

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research was conducted as part of the OASIS project, supported by OSEO within the contract FUI no. F1012003Z. The first author is grateful to Innoviris for its support to BB2B project entitled multicriteria optimization with uncertainty quantification applied to the building industry. The authors also acknowledge the support of Labex MS2T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Lebon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebon, J., Le Quilliec, G., Breitkopf, P. et al. A two-pronged approach for springback variability assessment using sparse polynomial chaos expansion and multi-level simulations. Int J Mater Form 7, 275–287 (2014). https://doi.org/10.1007/s12289-013-1126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-013-1126-y

Keywords

Navigation