Skip to main content
Log in

The Evaluation of Mass/DNA Copy Number of Mitochondria in Umbilical Cord Blood-derived Hematopoietic Stem Cells Cocultured with MSCs

  • ORIGINAL ARTICLE
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

Over recent decades, UCB has been widely used as an excellent alternative source of HSCs for treating many hematologic disorders. Recent studies suggest using mesenchymal stroma cell co-cultures to increase the number of HSCs prior to transplantation. Considering the critical role of mitochondria in the cell's fate and the importance of the self-renewal capacity of HSCs in HSCT, we decided to investigate the mass/DNA copy number of mitochondria in HSCs while co-cultured with MSCs and alone after seven days. UCB units were collected from full-term deliveries. MSCs and HSCs were isolated from UCB and the purity of cells was confirmed by flow cytometry. The mtDNA-Copy Number of HSCs was calculated using prob-based real-time PCR. Furthermore, Mito Tracker Green dye measured the mass of mitochondria of HSCs. HSCs from MSC co-culture group showed significantly fewer mtDNA-CN compared to HSCs alone after seven days (p < 0.001). Besides, by comparing the two groups on day seven to HSCs on day zero, we observed a mild increase in the mitochondrial mass of HSCs alone compared to the MSC-HSC co-culture group (p < 0.05). Concerning previous studies that have proved the association between lower mass/DNA-copy number of mitochondria in CD34 + HSCs and lower metabolic activity along with higher quiescence maintenance, and by considering the results of this experiment, it seems that the MSC-HSC co-cultures might be associated with a higher expansion of HSCs as well as stemness maintenance leading to the improvement in engraftment. Nevertheless, further investigations are required to clarify the exact connection between lower mass/DNA-copy number of mitochondria and stemness maintenance in HSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The research data associated with this paper is available.

References

  1. Ebens CL, MacMillan ML, Wagner JE (2017) Hematopoietic cell transplantation in Fanconi anemia: current evidence, challenges and recommendations. Expert Rev Hematol 10(1):81–97. https://doi.org/10.1080/17474086.2016.1268048

    Article  CAS  PubMed  Google Scholar 

  2. Smith AR, Wagner JE (2009) Alternative hematopoietic stem cell sources for transplantation: place of umbilical cord blood. Br J Haematol 147(2):246–261. https://doi.org/10.1111/j.1365-2141.2009.07828.x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gluckman E (2011) Milestones in umbilical cord blood transplantation. Blood Rev 25(6):255–259. https://doi.org/10.1016/j.blre.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  4. Flores-Guzmán P, Fernández-Sánchez V, Mayani H (2013) Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl Med 2(11):830–838. https://doi.org/10.5966/sctm.2013-0071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Behzad-Behbahani A, Pouransari R, Tabei SZ, Rahiminejad MS, Robati M, Yaghobi R et al (2005) Risk of viral transmission via bone marrow progenitor cells versus umbilical cord blood hematopoietic stem cells in bone marrow transplantation. Transpl Proc 37(7):3211–3212. https://doi.org/10.1016/j.transproceed.2005.07.007

    Article  CAS  Google Scholar 

  6. Bari S, Chu PPY, Lim A, Fan X, Bunte RM, Li S et al (2015) Mitochondrial superoxide reduction and cytokine secretion skewing by carbon nanotube scaffolds enhance ex vivo expansion of human cord blood hematopoietic progenitors. Nanomed Nanotechnol Biol Med 11(7):1643–1656. https://doi.org/10.1016/j.nano.2015.06.005

  7. Dessels C, Alessandrini M, Pepper MS (2018) Factors influencing the umbilical cord blood stem cell industry: an evolving treatment landscape. Stem Cells Transl Med 7(9):643–650. https://doi.org/10.1002/sctm.17-0244

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guo C-J, Gao Y, Hou D, Shi D-Y, Tong X-M, Shen D et al (2011) Preclinical transplantation and safety of HS/PCs expanded from human umbilical cord blood. World J Stem Cells 3(5):43–52. https://doi.org/10.4252/wjsc.v3.i5.43

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tung SS, Parmar S, Robinson SN, De Lima M, Shpall EJ (2010) Ex vivo expansion of umbilical cord blood for transplantation. Best Pract Res Clin Haematol 23(2):245–257. https://doi.org/10.1016/j.beha.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  10. Sideri A, Neokleous N, Brunet De La Grange P, Guerton B, Le BousseKerdilles M-C, Uzan G et al (2011) An overview of the progress on double umbilical cord blood transplantation. Haematologica 96(8):1213–1220. https://doi.org/10.3324/haematol.2010.038836

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ikehara S (2005) Intra-bone marrow-bone marrow transplantation: a new strategy for treatment of stem cell disorders. Ann N Y Acad Sci 1051:626–634. https://doi.org/10.1196/annals.1361.107

    Article  PubMed  Google Scholar 

  12. Carrancio S, Romo C, Ramos T, Lopez-Holgado N, Muntion S, Prins HJ et al (2013) Effects of MSC coadministration and route of delivery on cord blood hematopoietic stem cell engraftment. Cell Transplant 22(7):1171–1183. https://doi.org/10.3727/096368912X657431

    Article  CAS  PubMed  Google Scholar 

  13. Meuleman N, Tondreau T, Ahmad I, Kwan J, Crokaert F, Delforge A et al (2009) Infusion of mesenchymal stromal cells can aid hematopoietic recovery following allogeneic hematopoietic stem cell myeloablative transplant: a pilot study. Stem Cells Dev 18(9):1247–1252. https://doi.org/10.1089/scd.2009.0029

    Article  PubMed  Google Scholar 

  14. Derakhshani M, Abbaszadeh H, Movassaghpour AA, Mehdizadeh A, Ebrahimi-Warkiani M, Yousefi M (2019) Strategies for elevating hematopoietic stem cells expansion and engraftment capacity. Life Sci 232:116598. https://doi.org/10.1016/j.lfs.2019.116598

    Article  CAS  PubMed  Google Scholar 

  15. de Lima M, McNiece I, Robinson SN, Munsell M, Eapen M, Horowitz M et al (2012) Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med 367(24):2305–2315. https://doi.org/10.1056/NEJMoa1207285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walenda T, Bokermann G, Ventura Ferreira MS, Piroth DM, Hieronymus T, Neuss S et al (2011) Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells. Exp Hematol 39(6):617–628. https://doi.org/10.1016/j.exphem.2011.02.011

    Article  CAS  PubMed  Google Scholar 

  17. Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN et al (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7(3):380–390. https://doi.org/10.1016/j.stem.2010.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wagner W, Roderburg C, Wein F, Diehlmann A, Frankhauser M, Schubert R et al (2007) Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells (Dayton, Ohio) 25(10):2638–2647. https://doi.org/10.1634/stemcells.2007-0280

    Article  CAS  PubMed  Google Scholar 

  19. The organization and inheritance of the mitochondrial genome | Nature Reviews Genetics. https://www.nature.com/articles/nrg1708. Accessed 23.06.15

  20. Shen J, Platek M, Mahasneh A, Ambrosone CB, Zhao H (2010) Mitochondrial copy number and risk of breast cancer: a pilot study. Mitochondrion 10(1):62–68. https://doi.org/10.1016/j.mito.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  21. Hu L, Zhang Y, Miao W, Cheng T (2019) Reactive oxygen species and Nrf2: functional and transcriptional regulators of hematopoiesis. Oxid Med Cell Longev 2019:5153268. https://doi.org/10.1155/2019/5153268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shinohara A, Imai Y, Nakagawa M, Takahashi T, Ichikawa M, Kurokawa M (2014) Intracellular reactive oxygen species mark and influence the megakaryocyte-erythrocyte progenitor fate of common myeloid progenitors. Stem Cells (Dayton, Ohio) 32(2):548–557. https://doi.org/10.1002/stem.1588

    Article  CAS  PubMed  Google Scholar 

  23. Jang Y-Y, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110(8):3056–3063. https://doi.org/10.1182/blood-2007-05-087759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12(4):446–451. https://doi.org/10.1038/nm1388

    Article  CAS  PubMed  Google Scholar 

  25. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611. https://doi.org/10.1016/j.cell.2008.01.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang H, Menzies KJ, Auwerx, J (2018) The role of mitochondria in stem cell fate and aging. Development (Cambridge, England) 145(8):dev143420. https://doi.org/10.1242/dev.143420

  27. Chen C-T, Hsu S-H, Wei Y-H (2010) Upregulation of mitochondrial function and antioxidant defense in the differentiation of stem cells. Biochem Biophys Acta 1800(3):257–263. https://doi.org/10.1016/j.bbagen.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  28. Chen C-T, Hsu S-H, Wei Y-H (2012) Mitochondrial bioenergetic function and metabolic plasticity in stem cell differentiation and cellular reprogramming. Biochem Biophys Acta 1820(5):571–576. https://doi.org/10.1016/j.bbagen.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  29. Romero-Moya D, Bueno C, Montes R, Navarro-Montero O, Iborra FJ, López LC et al (2013) Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function. Haematologica 98(7):1022–1029. https://doi.org/10.3324/haematol.2012.079244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clay Montier LL, Deng JJ, Bai Y (2009) Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics = Yi Chuan Xue Bao 36(3):125–131. https://doi.org/10.1016/S1673-8527(08)60099-5

  31. Shadel GS (2008) Expression and maintenance of mitochondrial DNA: new insights into human disease pathology. Am J Pathol 172(6):1445–1456. https://doi.org/10.2353/ajpath.2008.071163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu M (2011) Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers. Life Sci 89(3–4):65–71. https://doi.org/10.1016/j.lfs.2011.05.010

    Article  CAS  PubMed  Google Scholar 

  33. M-Reboredo N, Díaz A, Castro A, Villaescusa RG (2000) Collection, processing and cryopreservation of umbilical cord blood for unrelated transplantation. Bone Marrow Transplant 26(12):1263–1270. https://doi.org/10.1038/sj.bmt.1702728

  34. Adamson JW (1997) Cord blood stem cell banking and transplantation. Stem Cells (Dayton, Ohio) 15 Suppl 1:57–59; discussion 59–61. https://doi.org/10.1002/stem.5530150809

  35. Venegas V, Halberg MC (2012) Measurement of mitochondrial DNA copy number. Methods Mol Biol (Clifton, N.J.) 837:327–335. https://doi.org/10.1007/978-1-61779-504-6_22

  36. Noort WA, Kruisselbrink AB, in’t Anker PS, Kruger M, van Bezooijen RL, de Paus RA et al (2002) Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 30(8):870–878. https://doi.org/10.1016/s0301-472x(02)00820-2

  37. Zhang Y, Chai C, Jiang X-S, Teoh S-H, Leong KW (2006) Co-culture of umbilical cord blood CD34+ cells with human mesenchymal stem cells. Tissue Eng 12(8):2161–2170. https://doi.org/10.1089/ten.2006.12.2161

    Article  PubMed  Google Scholar 

  38. Lin HD, Fong C-Y, Biswas A, Bongso A (2020) Allogeneic human umbilical cord Wharton’s jelly stem cells increase several-fold the expansion of human cord blood CD34+ cells both in vitro and in vivo. Stem Cell Res Ther 11(1):527. https://doi.org/10.1186/s13287-020-02048-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou B, Xu M, Lu S, Liu Y, Qi L, Liu T et al (2022) Clinical outcomes of B cell acute lymphoblastic leukemia patients treated with haploidentical stem cells combined with umbilical cord blood transplantation. Transplant Cell Ther 28(3):173.e1-173.e6. https://doi.org/10.1016/j.jtct.2021.12.010

    Article  PubMed  Google Scholar 

  40. Yang J, Wang L, Wu MX (2020) 830 nm photobiomodulation therapy promotes engraftment of human umbilical cord blood-derived hematopoietic stem cells. Sci Rep 10(1):19671. https://doi.org/10.1038/s41598-020-76760-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bieback K, Kern S, Klüter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells (Dayton, Ohio) 22(4):625–634. https://doi.org/10.1634/stemcells.22-4-625

    Article  PubMed  Google Scholar 

  42. Robinson SN, Ng J, Niu T, Yang H, McMannis JD, Karandish S et al (2006) Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant 37(4):359–366. https://doi.org/10.1038/sj.bmt.1705258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chu PPY, Bari S, Fan X, Gay FPH, Ang JML, Chiu GNC et al (2012) Intercellular cytosolic transfer correlates with mesenchymal stromal cell rescue of umbilical cord blood cell viability during ex vivo expansion. Cytotherapy 14(9):1064–1079. https://doi.org/10.3109/14653249.2012.697146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Han J-Y, Goh RY, Seo SY, Hwang TH, Kwon HC, Kim SH et al (2007) Cotransplantation of cord blood hematopoietic stem cells and culture-expanded and GM-CSF-/SCF-transfected mesenchymal stem cells in SCID mice. J Korean Med Sci 22(2):242–247. https://doi.org/10.3346/jkms.2007.22.2.242

    Article  PubMed  PubMed Central  Google Scholar 

  45. Suda T, Takubo K, Semenza GL (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9(4):298–310. https://doi.org/10.1016/j.stem.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  46. Chen C, Liu Y, Liu R, Ikenoue T, Guan K-L, Liu Y et al (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205(10):2397–2408. https://doi.org/10.1084/jem.20081297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A et al (2003) Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198(9):1391–1402. https://doi.org/10.1084/jem.20030267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Itkin T, Lapidot T (2011) SDF-1 keeps HSC quiescent at home. Blood 117(2):373–374. https://doi.org/10.1182/blood-2010-09-307843

    Article  CAS  PubMed  Google Scholar 

  49. AbdRadzak SM, MohdKhair SZN, Ahmad F, Patar A, Idris Z, Mohamed Yusoff AA (2022) Insights regarding mitochondrial DNA copy number alterations in human cancer (Review). Int J Mol Med 50(2):104. https://doi.org/10.3892/ijmm.2022.5160

    Article  CAS  Google Scholar 

  50. Dai J-G, Zhang Z-Y, Liu Q-X, Min J-X (2013) Mitochondrial genome microsatellite instability and copy number alteration in lung carcinomas. Asian Pac J Cancer Prev: APJCP 14(4):2393–2399. https://doi.org/10.7314/apjcp.2013.14.4.2393

    Article  PubMed  Google Scholar 

  51. Radzak S, Khair Z, Ahmad F, Idris Z, Yusoff A (2021) Accumulation of mitochondrial DNA microsatellite instability in Malaysian patients with primary central nervous system tumors. Turk Neurosurg 31(1):99–106. https://doi.org/10.5137/1019-5149.JTN.27893-20.4

    Article  PubMed  Google Scholar 

  52. Campa D, Barrdahl M, Santoro A, Severi G, Baglietto L, Omichessan H et al (2018) Mitochondrial DNA copy number variation, leukocyte telomere length, and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Breast Cancer Res: BCR 20(1):29. https://doi.org/10.1186/s13058-018-0955-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Piccoli C, Capitanio N (2018) Mitochondria confirmed as drivers of HSC fate. Blood 132(9):878–880. https://doi.org/10.1182/blood-2018-07-861708

    Article  CAS  PubMed  Google Scholar 

  54. Arranz L, Urbano-Ispizúa Á, Méndez-Ferrer S (2013) Mitochondria underlie different metabolism of hematopoietic stem and progenitor cells. Haematologica 98(7):993–995. https://doi.org/10.3324/haematol.2013.084293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hu M, Wang J (2019) Mitochondrial metabolism and the maintenance of hematopoietic stem cell quiescence. Curr Opin Hematol 26(4):228–234. https://doi.org/10.1097/MOH.0000000000000507

    Article  PubMed  Google Scholar 

  56. Takihara Y, Nakamura-Ishizu A, Tan DQ, Fukuda M, Matsumura T, Endoh M et al (2019) High mitochondrial mass is associated with reconstitution capacity and quiescence of hematopoietic stem cells. Blood Adv 3(15):2323–2327. https://doi.org/10.1182/bloodadvances.2019032169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Papa L, Djedaini M, Hoffman R (2019) Mitochondrial role in stemness and differentiation of hematopoietic stem cells. Stem Cells Int 2019:4067162. https://doi.org/10.1155/2019/4067162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Tarbiat Modares University (Tehran, Iran) for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

The authors Kosar Fateh and Fatemeh Mansoori contributed to this paper equally and Dr. Atashi is the corresponding author.

Corresponding author

Correspondence to Amir Atashi.

Ethics declarations

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Conflict of Interests

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fateh, K., Mansoori, F. & Atashi, A. The Evaluation of Mass/DNA Copy Number of Mitochondria in Umbilical Cord Blood-derived Hematopoietic Stem Cells Cocultured with MSCs. Indian J Hematol Blood Transfus (2024). https://doi.org/10.1007/s12288-024-01774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12288-024-01774-2

Keywords

Navigation