Skip to main content

Advertisement

Log in

Ex vivo dual gene therapy using human adipocytes secreting anti-HER2 antibody on HER2-positive xenograft tumor models

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Although targeted treatments against human epidermal growth factor receptor 2 (HER2) have improved survival in patients with metastatic HER2-positive breast cancer, long and repeated treatment is time-consuming and costly for patients. To reduce these burdens, we developed ex vivo gene-transduced adipocytes that secrete anti-HER2 antibodies and evaluated their anti-tumor effects.

Methods

Ceiling culture-derived proliferative adipocytes (ccdPA) secreting anti-HER2 antibody against domain IV receptors: TRA-ccdPA, and domain II receptors: PER-ccdPA, were constructed using a plasmid lentivirus. Delivery of secreted antibody and its specific binding to HER2 breast cancer were evaluated in vitro and in vivo. To optimize antibody production from ccdPA, different conditions of ccdPA implantation were examined. Anti-tumor efficacy was evaluated in HER2-positive-cancer-inoculated nude mice.

Results

Anti-HER2 antibody against domain II was identified in supernatants from PER-ccdPAs. The optimal method to achieve the highest concentration of antibody in mouse sera was injecting differentiated ccdPA cells into the mammary fat pad. Antibody in supernatants from PER-ccdPAs bound to the surface of HER2-positive breast cancer cells similar to pertuzumab. Antibodies in mouse sera were delivered to HER2-positive breast cancer tumors and tumor necrosis was observed microscopically. One-time administration of combined TRA-ccdPAs and PER-ccdPAs produced antibody continuously in mouse sera, and anti-tumor effects were maintained for the duration of this study in xenograft models. Furthermore, combination therapy significantly suppressed tumor growth compared with a single administration.

Conclusion

Ex vivo gene-transduced adipocytes might be useful for cell-based gene therapy. This system may be a platform for various antibody therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Peto R, Davies C, Godwin J, Gray R, Pan HC, Clarke M, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet. 2012;379(9814):432–44.

    Article  CAS  PubMed  Google Scholar 

  2. Anan K, Mitsuyama S, Koga K, Tanabe R, Saimura M, Tanabe Y, et al. Disparities in the survival improvement of recurrent breast cancer. Breast Cancer. 2010;17(1):48–55.

    Article  PubMed  Google Scholar 

  3. Giordano SH, Buzdar AU, Smith TL, Kau SW, Yang Y, Hortobagyi GN. Is breast cancer survival improving? Cancer. 2004;100(1):44–52.

    Article  PubMed  Google Scholar 

  4. Cameron D, Piccart-Gebhart MJ, Gelber RD, Procter M, Goldhirsch A, de Azambuja E, et al. Herceptin adjuvant trial study T, 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin adjuvant (HERA) trial. Lancet. 2017;389(10075):1195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gianni L, Eiermann W, Semiglazov V, Lluch A, Tjulandin S, Zambetti M, et al. Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol. 2014;15(6):640–7.

    Article  CAS  PubMed  Google Scholar 

  6. Dawood S, Broglio K, Buzdar AU, Hortobagyi GN, Giordano SH. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional based review. J Clin Oncol. 2010;28(1):92–8.

    Article  CAS  PubMed  Google Scholar 

  7. Witzel I, Müller V, Abenhardt W, Kaufmann M, Schoenegg W, Schneeweis A, et al. Long-term tumor remission under trastuzumab treatment for HER2 positive metastatic breast cancer – results from the HER-OS patient registry. BMC Cancer. 2014;14:806.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Masuda T, Fujimoto H, Teranaka R, Kuroda M, Aoyagi Y, Nagashima T, et al. Anti-HER2 antibody therapy using gene-transduced adipocytes for HER2-positive breast cancer. Breast Cancer Res Treat. 2020;180(3):625–34.

    Article  CAS  PubMed  Google Scholar 

  9. Richard S, Selle F, Lotz JP, Khalil A, Gligorov J, Soares D. Pertuzumab and trastuzumab: the rationale way to synergy. An Acad Bras Cienc. 2016;88(1):565–77.

    Article  CAS  PubMed  Google Scholar 

  10. Swain SM, Kim SB, Cortés J, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2013;14(6):461–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gianni L, Pienkowski T, Im YH, Roman L, Tseng LM, Liu MC, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  12. Kurebayashi J, Otsuki T, Tang CK, Kurosumi M, Yamamoto S, Tanaka K, et al. Isolation and characterization of a new human breast cancer cell line, KPL-4, expressing the Erb B family receptors and interleukin-6. Br J Cancer. 1999;79(5–6):707–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuroda M, Aoyagi Y, Asada S, Bujo H, Tanaka S, Konno S, et al. Ceiling culture-derived proliferative adipocytes are a possible delivery vehicle for enzyme replacement therapy in lecithin: cholesterol acyltransferase deficiency. Open Gene Ther J. 2011;4:1–10.

    Article  CAS  Google Scholar 

  14. Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on her2-positive human xenograft tumor models. Cancer Res. 2009. https://doi.org/10.1158/0008-5472.CAN-08-4597.

    Article  PubMed  Google Scholar 

  15. Kumar S, Markusic D, Biswas M, High K, Herzog R. Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev. 2016;25(3):16034.

    Article  Google Scholar 

  16. Sun W, Shi Q, Zhang H, Yang K, Ke Y, Wang Y, et al. Advances in the techniques and methodologies of cancer gene therapy. Discover Med. 2019;27(146):45–55.

    CAS  Google Scholar 

  17. Maude S, Laetsch T, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with b-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park J, Rivière I, Gonen M, Wang X, Sénéchal B, Curran K, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wirth T, Ylä-Herttuala S. Gene therapy used in cancer treatment. Biomedicines. 2014;2(2):149–62.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jiang M, Shi W, Zhang Q, Wang X, Guo M, Cui Z, et al. Gene therapy using adenovirus-mediated full-length anti-HER-2 antibody for HER-2 overexpression cancers. Clin Cancer Res. 2006;12(20 Pt 1):6179–85.

    Article  CAS  PubMed  Google Scholar 

  21. Kim H, Danishmalik S, Hwang H, Sin JI, Oh J, Cho Y, et al. Gene therapy using plasmid DNA-encoded anti-HER2 antibody for cancers that overexpress HER2. Cancer Gene Ther. 2016;23(10):341–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kanojia D, Balyasnikova I, Morshed R, Frank R, Yu D, Zhang L, et al. Neural stem cells secreting anti-HER2 antibody improve survival in a preclinical model of HER2 overexpressing breast cancer brain metastases. Stem Cells. 2015;33(10):2985–94.

    Article  CAS  PubMed  Google Scholar 

  23. Zafir-Lavie I, Sherbo S, Goltsman H, Badinter F, Yeini E, Ofek P, et al. Successful intracranial delivery of trastuzumab by gene-therapy for treatment of HER2-positive breast cancer brain metastases. J Control Release. 2018;10(291):80–9.

    Article  Google Scholar 

  24. Spalding K, Arner E, Westermark P, Bernard S, Buchholz B, Bergmann O, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):783–7.

    Article  CAS  PubMed  Google Scholar 

  25. Kronowitz S, Mandujano C, Liu J, Kuerer H, Smith B, Garvey P, et al. Lipofilling of the breast does not increase the risk of recurrence of breast cancer: a matched controlled study. Plast Reconstr Surg. 2016;137(2):385–93.

    Article  CAS  PubMed  Google Scholar 

  26. Wazir U, Chehade H, Headon H, Oteifa M, Kasem A, Mokbel K. Oncological safety of lipofilling in patients with breast cancer: a meta-analysis and update on clinical practice. Anticancer Res. 2016;36(9):4521–8.

    Article  PubMed  Google Scholar 

  27. Aoyagi Y, Kuroda M, Asada S, Tanaka S, Konno S, Tanio M, et al. Fibrin glue is a candidate scaffold for long-term therapeutic protein expression in spontaneously differentiated adipocytes in vitro. Exp Cell Res. 2012;318(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  28. Rita Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res. 2004;64(7):2343–6.

    Article  PubMed  Google Scholar 

  29. Tokuda Y, Ohnishi Y, Shimamura K, Iwasawa M, Yoshimura M, Ueyama Y, et al. In vitro and in vivo anti-tumour effects of a humanised monoclonal antibody against c-erbB-2 product. Br J Cancer. 1996;73(11):1362–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo Y, Li W, Jiang Z, Zhang Q, Wang L, Mao Y, et al. Pharmacokinetics of pertuzumab administered concurrently with trastuzumab in Chinese patients with HER2-positive early breast cancer. Anticancer Drugs. 2019;30(8):866–72.

    Article  CAS  PubMed  Google Scholar 

  31. Ito M, Bujo H, Takahashi K, Arai T, Tanaka I, Saito Y. Implantation of primary cultured adipocytes that secrete insulin modifies blood glucose levels in diabetic mice. Diabetologia. 2005;48(8):1614–20.

    Article  CAS  PubMed  Google Scholar 

  32. Aso M, Yamamoto T, Kuroda M, Wada J, Kubota Y, Ishikawa K, et al. First-in-human autologous implantation of genetically modified adipocytes expressing LCAT for the treatment of familial LCAT deficiency. Heliyon. 2022. https://doi.org/10.1016/j.heliyon.2022.e11271.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Muñoz M, Argüelles S, Guzman-Chozas M, Guillén-Sanz R, Franco J, Pintor-Toro J, et al. Cell tracking, survival, and differentiation capacity of adipose-derived stem cells after engraftment in rat tissue. J Cell Physiol. 2018;233(10):6317–28.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank CellGenTech Inc. for their support of this work. We thank Edanz Group (https://en-author-services.edanz.com/ac) for editing a draft of this manuscript. We thank Professor J. Kurebayashi for providing KPL-4.

Funding

This work was supported by MEXT KAKENHI Grant Number JP 18K08588 (H.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Fujimoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teranaka, R., Fujimoto, H., Masuda, T. et al. Ex vivo dual gene therapy using human adipocytes secreting anti-HER2 antibody on HER2-positive xenograft tumor models. Breast Cancer 30, 1018–1027 (2023). https://doi.org/10.1007/s12282-023-01497-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-023-01497-8

Keywords

Navigation