Skip to main content

Advertisement

Log in

The potential role of nicotine in breast cancer initiation, development, angiogenesis, invasion, metastasis, and resistance to therapy

  • Review Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

A large body of research studying the relationship between tobacco and cancer has led to the knowledge that smoking cigarettes adversely affects cancer treatment while contributing to the development of various tobacco-related cancers. Nicotine is the main addictive component of tobacco smoke and promotes angiogenesis, proliferation, and epithelial–mesenchymal transition (EMT) while promoting growth and metastasis of tumors. Nicotine generally acts through the induction of the nicotinic acetylcholine receptors (nAChRs), although the contribution of other receptor subunits has also been reported. Nicotine contributes to the pathogenesis of a wide range of cancers including breast cancer through its carcinogens such as (4-methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN). Current study aims to review the mechanistic function of nicotine in the initiation, development, angiogenesis, invasion, metastasis, and apoptosis of breast cancer with the main focus on nicotine acetylcholine receptors (nAChRs) and nAChR-mediated signaling pathways as well as on its potential for the development of an effective treatment against breast cancer. Moreover, we will try to demonstrate how nicotine leads to poor treatment response in breast cancer by enhancing the population, proliferation, and self-renewal of cancer stem cells (CSCs) through the activation of α7-nAChR receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Türker Şener L, Güven C, Şener A, Adin Çinar S, Solakoğlu S, Albeniz I. Nicotine reduces effectiveness of doxorubicin chemotherapy and promotes CD44+ CD24-cancer stem cells in MCF-7 cell populations. Exp Ther Med. 2018;16:21–8.

    PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  3. O’Shaughnessy J. Extending survival with chemotherapy in metastatic breast cancer. Oncologist. 2005;10:20–9.

    Article  CAS  PubMed  Google Scholar 

  4. Rivera E. Implications of anthracycline-resistant and taxane-resistant metastatic breast cancer and new therapeutic options. Breast J. 2010;16:252–63.

    Article  CAS  PubMed  Google Scholar 

  5. Porkka K, Blomqvist C, Rissanen P, Elomaa I, Pyrhönen S. Salvage therapies in women who fail to respond to first-line treatment with fluorouracil, epirubicin, and cyclophosphamide for advanced breast cancer. J Clin Oncol. 1994;12:1639–47.

    Article  CAS  PubMed  Google Scholar 

  6. Li T, Zhang J, Zhang J, Zhang N, Zeng Y, Tang S, et al. Nicotine-enhanced stemness and epithelial-mesenchymal transition of human umbilical cord mesenchymal stem cells promote tumor formation and growth in nude mice. Oncotarget. 2018;9:591.

    Article  PubMed  Google Scholar 

  7. Catsburg C, Kirsh VA, Soskolne CL, Kreiger N, Rohan TE. Active cigarette smoking and the risk of breast cancer: a cohort study. Cancer Epidemiol. 2014;38:376–81.

    Article  PubMed  Google Scholar 

  8. Wesley HA. Indoor tobacco smoke pollution a major risk factor for both breast and lung cancer? Cancer. 1988;62:6–14.

    Article  Google Scholar 

  9. Band PR, Le ND, Fang R, Deschamps M. Carcinogenic and endocrine disrupting effects of cigarette smoke and risk of breast cancer. Lancet. 2002;360:1044–9.

    Article  CAS  PubMed  Google Scholar 

  10. Ho Y-S, Chen C-H, Wang Y-J, Pestell RG, Albanese C, Chen R-J, et al. Tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial epithelial cells through NFκB activation and cyclin D1 up-regulation. Toxicol Appl Pharmacol. 2005;205:133–48.

    Article  CAS  PubMed  Google Scholar 

  11. Lin R-K, Hsieh Y-S, Lin P, Hsu H-S, Chen C-Y, Tang Y-A, et al. The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J Clin Investig. 2010;120:521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen R-J, Ho Y-S, Guo H-R, Wang Y-J. Long-term nicotine exposure–induced chemoresistance is mediated by activation of Stat3 and downregulation of ERK1/2 via nAChR and beta-adrenoceptors in human bladder cancer cells. Toxicol Sci. 2010;115:118–30.

    Article  CAS  PubMed  Google Scholar 

  13. Grando SA. Connections of nicotine to cancer. Nat Rev Cancer. 2014;14:419–29.

    Article  CAS  PubMed  Google Scholar 

  14. Schaal C, Chellappan SP. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res. 2014;12:14–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dasgupta P, Rizwani W, Pillai S, Kinkade R, Kovacs M, Rastogi S, et al. Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int J Cancer. 2009;124:36–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shin VY, Wu WK, Chu K-M, Wong HP, Lam EK, Tai EK, et al. Nicotine induces cyclooxygenase-2 and vascular endothelial growth factor receptor-2 in association with tumor-associated invasion and angiogenesis in gastric cancer. Mol Cancer Res. 2005;3:607–15.

    Article  CAS  PubMed  Google Scholar 

  17. Cooke J, Bitterman H. Nicotine and angiogenesis: a new paradigm for tobacco-related diseases. Ann Med. 2004;36:33–40.

    Article  CAS  PubMed  Google Scholar 

  18. Shin VY, Wu WK, Ye Y-N, So WH, Koo MW, Liu ES, et al. Nicotine promotes gastric tumor growth and neovascularization by activating extracellular signal-regulated kinase and cyclooxygenase-2. Carcinogenesis. 2004;25:2487–95.

    Article  CAS  PubMed  Google Scholar 

  19. Pham K, Huynh D, Le L, Delitto D, Yang L, Huang J, et al. E-cigarette promotes breast carcinoma progression and lung metastasis: Macrophage-tumor cells crosstalk and the role of CCL5 and VCAM-1. Cancer Lett. 2020;491:132–45.

    Article  CAS  PubMed  Google Scholar 

  20. Gemenetzidis E, Bose A, Riaz AM, Chaplin T, Young BD, Ali M, et al. FOXM1 upregulation is an early event in human squamous cell carcinoma and it is enhanced by nicotine during malignant transformation. PLoS ONE. 2009;4:e4849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Benowitz NL, Hukkanen J, Jacob P. Nicotine chemistry, metabolism, kinetics and biomarkers. Nicotine Psychopharmacol. 2009;29–60.

  22. Russell M, Jarvis M, Iyer R, Feyerabend C. Relation of nicotine yield of cigarettes to blood nicotine concentrations in smokers. Br Med J. 1980;280:972–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hukkanen J, Jacob P, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 2005;57:79–115.

    Article  CAS  PubMed  Google Scholar 

  24. Chae Y, Yeom M, Han J-H, Park H-J, Hahm D-H, Shim I, et al. Effect of acupuncture on anxiety-like behavior during nicotine withdrawal and relevant mechanisms. Neurosci Lett. 2008;430:98–102.

    Article  CAS  PubMed  Google Scholar 

  25. Ghosheh O, Dwoskin LP, Li W-K, Crooks PA. Residence times and half-lives of nicotine metabolites in rat brain after acute peripheral administration of [2′-14C] nicotine. Drug Metab Dispos. 1999;27:1448–55.

    CAS  PubMed  Google Scholar 

  26. Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2004;74:363–96.

    Article  CAS  PubMed  Google Scholar 

  27. Lindstrom J, Merlie J, Yogeeswaran G. Biochemical properties of acetylcholine receptor subunits from Torpedo californica. Biochemistry. 1979;18:4465–70.

    Article  CAS  PubMed  Google Scholar 

  28. Schuller HM, Orloff M. Tobacco-specific carcinogenic nitrosamines: ligands for nicotinic acetylcholine receptors in human lung cancer cells. Biochem Pharmacol. 1998;55:1377–84.

    Article  CAS  PubMed  Google Scholar 

  29. Lindstrom J. Neuronal nicotinic acetylcholine receptors. Ion channels. 1996;377–450.

  30. Gotti C, Fornasari D, Clementi F. Human neuronal nicotinic receptors. Prog Neurobiol. 1997;53:199–237.

    Article  CAS  PubMed  Google Scholar 

  31. Grando SA, Kawashima K, Wessler I. Introduction: the non-neuronal cholinergic system in humans. Life Sci. 2003;72:2009–12.

    Article  CAS  PubMed  Google Scholar 

  32. Zdanowski R, Krzyżowska M, Ujazdowska D, Lewicka A, Lewicki S. Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways. Central-Eur J Immunol. 2015;40:373.

    Article  CAS  Google Scholar 

  33. Al-Wadei HA, Majidi M, Tsao M-S, Schuller HM. Low concentrations of beta-carotene stimulate the proliferation of human pancreatic duct epithelial cells in a PKA-dependent manner. Cancer Genomics Proteomics. 2007;4:35–42.

    CAS  PubMed  Google Scholar 

  34. Jull B, Plummer H, Schuller H. Nicotinic receptor-mediated activation by the tobacco-specific nitrosamine NNK of a Raf-1/MAP kinase pathway, resulting in phosphorylation of c-myc in human small cell lung carcinoma cells and pulmonary neuroendocrine cells. J Cancer Res Clin Oncol. 2001;127:707–17.

    Article  CAS  PubMed  Google Scholar 

  35. Schaal C, Padmanabhan J, Chellappan S. The role of nAChR and calcium signaling in pancreatic cancer initiation and progression. Cancers. 2015;7:1447–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wei P-L, Chang Y-J, Ho Y-S, Lee C-H, Yang Y-Y, An J, et al. Tobacco-specific carcinogen enhances colon cancer cell migration through α7-nicotinic acetylcholine receptor. Ann Surg. 2009;249:978–85.

    Article  PubMed  Google Scholar 

  37. Lien Y-C, Wang W, Kuo L-J, Liu J-J, Wei P-L, Ho Y-S, et al. Nicotine promotes cell migration through alpha7 nicotinic acetylcholine receptor in gastric cancer cells. Ann Surg Oncol. 2011;18:2671–9.

    Article  PubMed  Google Scholar 

  38. Schuller HM. Nitrosamines as nicotinic receptor ligands. Life Sci. 2007;80:2274–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Singh S, Pillai S, Chellappan S. Nicotinic acetylcholine receptor signaling in tumor growth and metastasis. Journal of oncology. 2011; 2011.

  40. Nishioka T, Kim H-S, Luo L-Y, Huang Y, Guo J, Chen CY. Sensitization of epithelial growth factor receptors by nicotine exposure to promote breast cancer cell growth. Breast Cancer Res. 2011;13:1–11.

    Article  CAS  Google Scholar 

  41. Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA. Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of a7 nicotinic receptor in oral keratinocytes. FASEB J. 2006;20:2093–101.

    Article  CAS  PubMed  Google Scholar 

  42. Schaal C, Chellappan S. Nicotine-mediated regulation of nicotinic acetylcholine receptors in non-small cell lung adenocarcinoma by E2F1 and STAT1 transcription factors. PLoS ONE. 2016;11:e0156451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Chen R-J, Ho Y-S, Guo H-R, Wang Y-J. Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells. Toxicol Sci. 2008;104:283–93.

    Article  CAS  PubMed  Google Scholar 

  44. Telford WG, Bradford J, Godfrey W, Robey RW, Bates SE. Side population analysis using a violet-excited cell-permeable DNA binding dye. Stem cells. 2007;25:1029–36.

    Article  CAS  PubMed  Google Scholar 

  45. Guha P, Bandyopadhyaya G, Polumuri SK, Chumsri S, Gade P, Kalvakolanu DV, et al. Nicotine promotes apoptosis resistance of breast cancer cells and enrichment of side population cells with cancer stem cell-like properties via a signaling cascade involving galectin-3, α9 nicotinic acetylcholine receptor and STAT3. Breast Cancer Res Treat. 2014;145:5–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu C-H, Lee C-H, Ho Y-S. Nicotinic acetylcholine receptor-based blockade: applications of molecular targets for cancer therapy. Clin Cancer Res. 2011;17:3533–41.

    Article  CAS  PubMed  Google Scholar 

  47. Lee C-H, Chang Y-C, Chen C-S, Tu S-H, Wang Y-J, Chen L-C, et al. Crosstalk between nicotine and estrogen-induced estrogen receptor activation induces α9-nicotinic acetylcholine receptor expression in human breast cancer cells. Breast Cancer Res Treat. 2011;129:331–45.

    Article  CAS  PubMed  Google Scholar 

  48. Konno S, Chiao JW, Wu JM. Effects of nicotine on cellular proliferation, cell cyclephase distribution, and macromolecular synthesis in human promyelocytic HL-60 leukemia cells. Cancer Lett. 1986;33:91–7.

    Article  CAS  PubMed  Google Scholar 

  49. Bishun N, RW R. The in vitro and in vivo cytogenetic effects of nicotine. 1972.

  50. Riebe M, Westphal K. Studies on the induction of sister-chromatid exchanges in Chinese hamster ovary cells by various tobacco alkaloids. Mutat Res/Genetic Toxicol. 1983;124:281–6.

    Article  CAS  Google Scholar 

  51. Trivedi A, Dave B, Adhvaryu S. Assessment of genotoxicity of nicotine employing in vitro mammalian test system. Cancer Lett. 1990;54:89–94.

    Article  CAS  PubMed  Google Scholar 

  52. Ginzkey C, Friehs G, Koehler C, Hackenberg S, Hagen R, Kleinsasser NH. Assessment of nicotine-induced DNA damage in a genotoxicological test battery. Mutat Res/Genet Toxicol Environ Mutagen. 2013;751:34–9.

    Article  CAS  Google Scholar 

  53. Ginzkey C, Stueber T, Friehs G, Koehler C, Hackenberg S, Richter E, et al. Analysis of nicotine-induced DNA damage in cells of the human respiratory tract. Toxicol Lett. 2012;208:23–9.

    Article  CAS  PubMed  Google Scholar 

  54. Husgafvel-Pursiainen K. Genotoxicity of environmental tobacco smoke: a review. Mutat Res/Rev Mutat Res. 2004;567:427–45.

    Article  CAS  Google Scholar 

  55. Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer. 2002;2:331–41.

    Article  CAS  PubMed  Google Scholar 

  56. Lane DP. p53, guardian of the genome. Nature. 1992;358:15–6.

    Article  CAS  PubMed  Google Scholar 

  57. Sanchez-Cespedes M, Ahrendt SA, Piantadosi S, Rosell R, Monzo M, Wu L, et al. Chromosomal alterations in lung adenocarcinoma from smokers and nonsmokers. Can Res. 2001;61:1309–13.

    CAS  Google Scholar 

  58. Kumari K, Das B, Adhya A, Chaudhary S, Senapati S, Mishra SK. Nicotine associated breast cancer in smokers is mediated through high level of EZH2 expression which can be reversed by methyltransferase inhibitor DZNepA. Cell Death Dis. 2018;9:1–14.

    Article  CAS  Google Scholar 

  59. Kumari K, Das B, Adhya AK, Rath AK, Mishra SK. Genome-wide expression analysis reveals six contravened targets of EZH2 associated with breast cancer patient survival. Sci Rep. 2019;9:1–17.

    Article  CAS  Google Scholar 

  60. Jacob T, Clouden N, Hingorani A, Ascher E. The effect of cotinine on telomerase activity in human vascular smooth muscle cells. J Cardiovasc Surg. 2009;50:345.

    CAS  Google Scholar 

  61. Nakada T, Kiyotani K, Iwano S, Uno T, Yokohira M, Yamakawa K, et al. Lung tumorigenesis promoted by anti-apoptotic effects of cotinine, a nicotine metabolite through activation of PI3K/Akt pathway. J Toxicol Sci. 2012;37:555–63.

    Article  CAS  PubMed  Google Scholar 

  62. Hecht SS. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol. 1998;11:559–603.

    Article  CAS  PubMed  Google Scholar 

  63. Arredondo J, Chernyavsky AI, Grando SA. Nicotinic receptors mediate tumorigenic action of tobacco-derived nitrosamines on immortalized oral epithelial cells. Cancer Biol Ther. 2006;5:511–7.

    Article  CAS  PubMed  Google Scholar 

  64. Arredondo J, Chernyavsky AI, Grando SA. The nicotinic receptor antagonists abolish pathobiologic effects of tobacco-derived nitrosamines on BEP2D cells. J Cancer Res Clin Oncol. 2006;132:653–63.

    Article  CAS  PubMed  Google Scholar 

  65. Kawashima SK, Fujii T. Basic and clinical aspects of non-neuronal acetylcholine: overview of non-neuronal cholinergic systems and their biological. J Pharmacol Sci. 2008;106:167–73.

    Article  CAS  PubMed  Google Scholar 

  66. Lee C-H, Huang C-S, Chen C-S, Tu S-H, Wang Y-J, Chang Y-J, et al. Overexpression and activation of the α9-nicotinic receptor during tumorigenesis in human breast epithelial cells. J Natl Cancer Inst. 2010;102:1322–35.

    Article  CAS  PubMed  Google Scholar 

  67. West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, et al. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Investig. 2003;111:81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Johnson K, Glantz S. Evidence secondhand smoke causes breast cancer in 2005 stronger than for lung cancer in 1986. Prev Med. 2008;46:492–6.

    Article  CAS  PubMed  Google Scholar 

  69. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17:548–58.

    Article  CAS  PubMed  Google Scholar 

  70. Xu L, Deng X. Protein kinase Cι promotes nicotine-induced migration and invasion of cancer cells via phosphorylation of μ-and m-calpains. J Biol Chem. 2006;281:4457–66.

    Article  CAS  PubMed  Google Scholar 

  71. Cooke JP. Angiogenesis and the role of the endothelial nicotinic acetylcholine receptor. Life Sci. 2007;80:2347–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kanda Y, Watanabe Y. Nicotine-induced vascular endothelial growth factor release via the EGFR-ERK pathway in rat vascular smooth muscle cells. Life Sci. 2007;80:1409–14.

    Article  CAS  PubMed  Google Scholar 

  73. Palecek SP, Huttenlocher A, Horwitz AF, Lauffenburger DA. Physical and biochemical regulation of integrin release during rear detachment of migrating cells. J Cell Sci. 1998;111:929–40.

    Article  CAS  PubMed  Google Scholar 

  74. Grozio A, Catassi A, Cavalieri Z, Paleari L, Cesario A, Russo P. Nicotine, lung and cancer. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2007;7:461–6.

    Article  CAS  Google Scholar 

  75. Tyagi A, Sharma S, Wu K, Wu S-Y, Xing F, Liu Y, et al. Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat Commun. 2021;12:1–18.

    Article  CAS  Google Scholar 

  76. Proietti S, Catizone A, Masiello MG, Dinicola S, Fabrizi G, Minini M, et al. Increase in motility and invasiveness of MCF 7 cancer cells induced by nicotine is abolished by melatonin through inhibition of ERK phosphorylation. J Pineal Res. 2018;64:e12467.

    Article  PubMed  CAS  Google Scholar 

  77. Zhang N, Zhu T, Yu K, Shi M, Wang X, Wang L, et al. Elevation of O-GlcNAc and GFAT expression by nicotine exposure promotes epithelial-mesenchymal transition and invasion in breast cancer cells. Cell Death Dis. 2019;10:1–12.

    CAS  Google Scholar 

  78. Chen PC, Lee WY, Ling HH, Cheng CH, Chen KC, Lin CW. Activation of fibroblasts by nicotine promotes the epithelial-mesenchymal transition and motility of breast cancer cells. J Cell Physiol. 2018;233:4972–80.

    Article  CAS  PubMed  Google Scholar 

  79. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  80. Catassi A, Servent D, Paleari L, Cesario A, Russo P. Multiple roles of nicotine on cell proliferation and inhibition of apoptosis: implications on lung carcinogenesis. Mutat Res/Rev Mutat Res. 2008;659:221–31.

    Article  CAS  Google Scholar 

  81. Trevino JG, Pillai S, Kunigal S, Singh S, Fulp WJ, Centeno BA, et al. Nicotine induces inhibitor of differentiation-1 in a Src-dependent pathway promoting metastasis and chemoresistance in pancreatic adenocarcinoma. Neoplasia. 2012;14:1102–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dasgupta P, Kinkade R, Joshi B, DeCook C, Haura E, Chellappan S. Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci. 2006;103:6332–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zeng F, Li YC, Chen G, Zhang YK, Wang YK, Zhou SQ, et al. Nicotine inhibits cisplatin-induced apoptosis in NCI-H446 cells. Med Oncol. 2012;29:364–73.

    Article  CAS  PubMed  Google Scholar 

  84. Egleton RD, Brown KC, Dasgupta P. Angiogenic activity of nicotinic acetylcholine receptors: implications in tobacco-related vascular diseases. Pharmacol Ther. 2009;121:205–23.

    Article  CAS  PubMed  Google Scholar 

  85. Xu J, Huang H, Pan C, Zhang B, Liu X, Zhang L. Nicotine inhibits apoptosis induced by cisplatin in human oral cancer cells. Int J Oral Maxillofac Surg. 2007;36:739–44.

    Article  CAS  PubMed  Google Scholar 

  86. Zeidler R, Albermann K, Lang S. Nicotine and apoptosis. Apoptosis. 2007;12:1927–43.

    Article  CAS  PubMed  Google Scholar 

  87. Cataldo JK, Dubey S, Prochaska JJ. Smoking cessation: an integral part of lung cancer treatment. Oncology. 2010;78:289–301.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nordquist LT, Simon GR, Cantor A, Alberts WM, Bepler G. Improved survival in never-smokers vs current smokers with primary adenocarcinoma of the lung. Chest. 2004;126:347–51.

    Article  PubMed  Google Scholar 

  89. Wen J, Fu J-H, Zhang W, Guo M. Lung carcinoma signaling pathways activated by smoking. Chin J Cancer. 2011;30:551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Egleton RD, Brown KC, Dasgupta P. Nicotinic acetylcholine receptors in cancer: multiple roles in proliferation and inhibition of apoptosis. Trends Pharmacol Sci. 2008;29:151–8.

    Article  CAS  PubMed  Google Scholar 

  91. Xin M, Deng X. Nicotine inactivation of the proapoptotic function of Bax through phosphorylation. J Biol Chem. 2005;280:10781–9.

    Article  CAS  PubMed  Google Scholar 

  92. Jin Z, Gao F, Flagg T, Deng X. Nicotine induces multi-site phosphorylation of Bad in association with suppression of apoptosis. J Biol Chem. 2004;279:23837–44.

    Article  CAS  PubMed  Google Scholar 

  93. Dan HC, Sun M, Kaneko S, Feldman RI, Nicosia SV, Wang H-G, et al. Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J Biol Chem. 2004;279:5405–12.

    Article  CAS  PubMed  Google Scholar 

  94. Cheng Y-J, Jiang H-S, Hsu S-L, Lin L-C, Wu C-L, Ghanta VK, et al. XIAP-mediated protection of H460 lung cancer cells against cisplatin. Eur J Pharmacol. 2010;627:75–84.

    Article  CAS  PubMed  Google Scholar 

  95. Trombino S, Cesario A, Margaritora S, Granone P, Motta G, Falugi C, et al. α7-nicotinic acetylcholine receptors affect growth regulation of human mesothelioma cells: role of mitogen-activated protein kinase pathway. Can Res. 2004;64:135–45.

    Article  CAS  Google Scholar 

  96. Gimonet D, Grailhe R, Coninx P, Antonicelli F, Haye B, Liautaud-Roger F. Functional role of nicotinic acetylcholine receptors in apoptosis in HL-60 cell line. Eur J Pharmacol. 2003;482:25–9.

    Article  CAS  PubMed  Google Scholar 

  97. Schuller HM. Neurotransmitter receptor-mediated signaling pathways as modulators of carcinogenesis. Neuronal Activity Tumor Tissue. 2007;39:45–63.

    Article  CAS  Google Scholar 

  98. Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, Hu RS, et al. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med. 2001;7:833–9.

    Article  CAS  PubMed  Google Scholar 

  99. Cardinale A, Nastrucci C, Cesario A, Russo P. Nicotine: specific role in angiogenesis, proliferation and apoptosis. Crit Rev Toxicol. 2012;42:68–89.

    Article  CAS  PubMed  Google Scholar 

  100. Lee J, Cooke JP. Nicotine and pathological angiogenesis. Life Sci. 2012;91:1058–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Heeschen C, Weis M, Aicher A, Dimmeler S, Cooke JP. A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. J Clin Investig. 2002;110:527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mousa S, Mousa SA. Cellular and molecular mechanisms of nicotine’s pro-angiogenesis activity and its potential impact on cancer. J Cell Biochem. 2006;97:1370–8.

    Article  CAS  PubMed  Google Scholar 

  103. Zhu B-q, Heeschen C, Sievers RE, Karliner JS, Parmley WW, Glantz SA, et al. Second hand smoke stimulates tumor angiogenesis and growth. Cancer Cell. 2003;4:191–6.

    Article  CAS  PubMed  Google Scholar 

  104. Ng MK, Wu J, Chang E, Wang B-y, Katzenberg-Clark R, Ishii-Watabe A, et al. A central role for nicotinic cholinergic regulation of growth factor–induced endothelial cell migration. Arterioscler Thromb Vasc Biol. 2007;27:106–12.

    Article  CAS  PubMed  Google Scholar 

  105. Spillane JB, Henderson MA. Cancer stem cells: a review. ANZ J Surg. 2007;77:464–8.

    Article  PubMed  Google Scholar 

  106. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Can Res. 2003;63:5821–8.

    CAS  Google Scholar 

  107. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hirata N, Sekino Y, Kanda Y. Nicotine increases cancer stem cell population in MCF-7 cells. Biochem Biophys Res Commun. 2010;403:138–43.

    Article  CAS  PubMed  Google Scholar 

  109. Lin W, Hirata N, Sekino Y, Kanda Y. Role of α7-nicotinic acetylcholine receptor in normal and cancer stem cells. Curr Drug Targets. 2012;13:356–65.

    Google Scholar 

  110. Li W, Zhou J, Chen Y, Zhang G, Jiang P, Hong L, et al. Cigarette smoke enhances initiation and progression of lung cancer by mutating Notch1/2 and dysregulating downstream signaling molecules. Oncotarget. 2017;8:115128.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kohutek ZA, Redpath GT, Hussaini IM. ADAM-10-mediated N-cadherin cleavage is protein kinase C-α dependent and promotes glioblastoma cell migration. J Neurosci. 2009;29:4605–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/β-catenin signaling. PLoS Biol. 2009;7:e1000121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci. 2007;104:16158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res. 2009;15:4234–41.

    Article  CAS  PubMed  Google Scholar 

  116. Jacobi J, Jang JJ, Sundram U, Dayoub H, Fajardo LF, Cooke JP. Nicotine accelerates angiogenesis and wound healing in genetically diabetic mice. Am J Pathol. 2002;161:97–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hansen SB, Taylor P. Galanthamine and non-competitive inhibitor binding to ACh-binding protein: evidence for a binding site on non-α-subunit interfaces of heteromeric neuronal nicotinic receptors. J Mol Biol. 2007;369:895–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sandall D, Satkunanathan N, Keays D, Polidano M, Liping X, Pham V, et al. A novel α-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry. 2003;42:6904–11.

    Article  CAS  PubMed  Google Scholar 

  119. Heeschen C, Weis M, Cooke JP. Nicotine promotes arteriogenesis. J Am Coll Cardiol. 2003;41:489–96.

    Article  CAS  PubMed  Google Scholar 

  120. Arneric SP, Holladay M, Williams M. Neuronal nicotinic receptors: a perspective on two decades of drug discovery research. Biochem Pharmacol. 2007;74:1092–101.

    Article  CAS  PubMed  Google Scholar 

  121. Hauser T, Kucinski A, Jordan K, Gatto G, Wersinger S, Hesse R, et al. TC-5619: an alpha7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. Biochem Pharmacol. 2009;78:803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sun Z, Zhangsun M, Dong S, Liu Y, Qian J, Zhangsun D, et al. Differential expression of nicotine acetylcholine receptors associates with human breast cancer and mediates antitumor activity of αO-conotoxin gexiva. Mar Drugs. 2020;18:61.

    Article  CAS  PubMed Central  Google Scholar 

  123. Chen C-S, Lee C-H, Hsieh C-D, Ho C-T, Pan M-H, Huang C-S, et al. Nicotine-induced human breast cancer cell proliferation attenuated by garcinol through down-regulation of the nicotinic receptor and cyclin D3 proteins. Breast Cancer Res Treat. 2011;125:73–87.

    Article  CAS  PubMed  Google Scholar 

  124. Shih Y-L, Liu H-C, Chen C-S, Hsu C-H, Pan M-H, Chang H-W, et al. Combination treatment with luteolin and quercetin enhances antiproliferative effects in nicotine-treated MDA-MB-231 cells by down-regulating nicotinic acetylcholine receptors. J Agric Food Chem. 2010;58:235–41.

    Article  CAS  PubMed  Google Scholar 

  125. Tu SH, Ku CY, Ho CT, Chen CS, Huang CS, Lee CH, et al. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits nicotine-and estrogen-induced α9-nicotinic acetylcholine receptor upregulation in human breast cancer cells. Mol Nutr Food Res. 2011;55:455–66.

    Article  CAS  PubMed  Google Scholar 

  126. Yu W-F, Guan Z-Z, Bogdanovic N, Nordberg A. High selective expression of α7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol. 2005;192:215–25.

    Article  CAS  PubMed  Google Scholar 

  127. Jain RK, Finn AV, Kolodgie FD, Gold HK, Virmani R. Antiangiogenic therapy for normalization of atherosclerotic plaque vasculature: a potential strategy for plaque stabilization. Nat Clin Pract Cardiovasc Med. 2007;4:491–502.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Tabriz University of Medical Sciences and Urmia University for all their support to this research.

Funding

The authors declare that the study had no fund.

Author information

Authors and Affiliations

Authors

Contributions

ZK was involved in writing the article. MV was involved in drawing figures. KV and APT participated in the study design, manuscript drafting, and revising.

Corresponding authors

Correspondence to Kobra Velaei or Abbas Pirpour Tazehkand.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodabandeh, Z., Valilo, M., Velaei, K. et al. The potential role of nicotine in breast cancer initiation, development, angiogenesis, invasion, metastasis, and resistance to therapy. Breast Cancer 29, 778–789 (2022). https://doi.org/10.1007/s12282-022-01369-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-022-01369-7

Keywords

Navigation