Skip to main content

Advertisement

Log in

Antitumor and anticancer stem cell activity of a poly ADP-ribose polymerase inhibitor olaparib in breast cancer cells

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Although the poly adenosine diphosphate (ADP)-ribose polymerase (PARP) inhibitor olaparib is known to have potent antitumor activity in BRCA-related breast cancer cells, a limited number of preclinical and clinical studies have shown antitumor activity of olaparib in non-BRCA-related breast cancer. We investigated antitumor activity of olaparib in breast cancer cell lines derived from patients with nonfamilial sporadic breast cancer.

Methods

Effects of olaparib alone or in combination with five different chemotherapeutic agents on cell growth, cell cycle progression, apoptosis, and proportion of cancer stem cells using the mammosphere assay and CD44/CD24/ESA cell surface marker assay were investigated in a panel of six sporadic breast cancer cell lines. Extracellular-signal-regulated kinase (ERK) phosphorylation was also investigated to elucidate action mechanisms of olaparib.

Results

Olaparib inhibited the growth of two estrogen receptor (ER)-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer cell lines and two ER-negative and HER2-negative breast cancer cell lines (50 % growth inhibitory concentrations 1.3–3.0 μM) associated with G2/M accumulation and induction of apoptosis. In contrast, two HER2-positive cell lines were resistant to olaparib. Interestingly, olaparib significantly decreased the proportion of putative cancer stem cells in either sensitive or resistant cell lines. In addition, olaparib increased expression of p-ERK. Combined treatments of olaparib with a mitogen-activated protein kinase kinase (MEK) inhibitor U0126 completely suppressed expression of p-ERK. These treatments also inhibited the G2/M accumulation and apoptosis induction by olaparib. Among five chemotherapeutic agents commonly used for breast cancer treatment, only an irinotecan metabolite SN38 showed additive antitumor activity with olaparib. Importantly, the combined treatment enhanced the increase in G2/M accumulation and apoptosis induction as well as a decrease in the proportion of cancer stem cells.

Conclusions

This study has indicated for the first time that the PARP inhibitor olaparib has substantial antitumor and anticancer stem cell activity in breast cancer cell lines of nonfamilial origin. Upregulation of p-ERK might explain, at least in part, antitumor and anticancer stem cell activity of olaparib. Combined treatment of olaparib with irinotecan might be effective in treatment of non-BRCA-related breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.

    Article  CAS  PubMed  Google Scholar 

  2. Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26:3785–90.

    Article  CAS  PubMed  Google Scholar 

  3. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.

    Article  CAS  PubMed  Google Scholar 

  4. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376:235–44.

    Article  CAS  PubMed  Google Scholar 

  5. Gelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 2011;12:852–61.

    Article  CAS  PubMed  Google Scholar 

  6. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kakarala M, Wicha MS. Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol. 2008;26:2813–20.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69:7507–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Zhou J, Zhang H, Gu P, Margolick JB, Yin D, Zhang Y. Cancer stem/progenitor cell active compound 8-quinolinol in combination with paclitaxel achieves an improved cure of breast cancer in the mouse model. Breast Cancer Res Treat. 2009;115:269–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Iliopoulos D, Hirsch HA, Struhl K. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res. 2011;71:3196–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kurebayashi J, Kurosumi M, Sonoo H. A new human breast cancer cell line, KPL-1 secretes tumour-associated antigens and grows rapidly in female athymic nude mice. Br J Cancer. 1995;71:845–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kurebayashi J, Kurosumi M, Sonoo H. A new human breast cancer cell line, KPL-3C, secretes parathyroid hormone-related protein and produces tumours associated with microcalcifications in nude mice. Br J Cancer. 1996;74:200–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kurebayashi J, Otsuki T, Tang CK, Kurosumi M, Yamamoto S, Tanaka K, et al. Isolation and characterization of a new human breast cancer cell line, KPL-4, expressing the Erb B family receptors and interleukin-6. Br J Cancer. 1999;79:707–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Cailleau R, Young R, Olivé M, Reeves WJ Jr. Breast tumor cell lines from pleural effusions. J Natl Cancer Inst. 1974;53:661–74.

    CAS  PubMed  Google Scholar 

  15. Young RK, Cailleau RM, Mackay B, Reeves WJ. Establishment of epithelial cell line MDA-MB-157 from metastatic pleural effusion of human breast carcinoma. In Vitro. 1974;9:239–45.

    Article  CAS  PubMed  Google Scholar 

  16. Lasfargues EY, Coutinho WG, Redfield ES. Isolation of two human tumor epithelial cell lines from solid breast carcinomas. J Natl Cancer Inst. 1978;61:967–78.

    CAS  PubMed  Google Scholar 

  17. Kurebayashi J, Kanomata N, Moriya T, Kozuka Y, Watanabe M, Sonoo H. Preferential antitumor effect of the Src inhibitor dasatinib associated with a decreased proportion of aldehyde dehydrogenase 1-positive cells in breast cancer cells of the basal B subtype. BMC Cancer. 2010;10:568.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10:5367–74.

    Article  CAS  PubMed  Google Scholar 

  19. Prat A, Perou CM. Mammary development meets cancer genomics. Nat Med. 2009;15:842–4.

    Article  CAS  PubMed  Google Scholar 

  20. Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One. 2009;4:e6146.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kurebayashi J, Nukatsuka M, Nagase H, Nomura T, Hirono M, Yamamoto Y, et al. Additive antitumor effect of concurrent treatment of 4-hydroxy tamoxifen with 5-fluorouracil but not with doxorubicin in estrogen receptor-positive breast cancer cells. Cancer Chemother Pharmacol. 2007;59:515–25.

    Article  CAS  PubMed  Google Scholar 

  22. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008;10:R25.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Guo Y, Zhang X, Meng J, Wang ZY. An anticancer agent icaritin induces sustained activation of the extracellular signal-regulated kinase (ERK) pathway and inhibits growth of breast cancer cells. Eur J Pharmacol. 2011;658:114–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cohen-Armon M, Visochek L, Rozensal D, Kalal A, Geistrikh I, Klein R, et al. DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol Cell. 2007;25:297–308.

    Article  CAS  PubMed  Google Scholar 

  26. Cohen-Armon M. PARP-1 activation in the ERK signaling pathway. Trends Pharmacol Sci. 2007;28:556–60.

    Article  CAS  PubMed  Google Scholar 

  27. Hsu YL, Kuo PL, Lin LT, Lin CC. Asiatic acid, a triterpene, induces apoptosis and cell cycle arrest through activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in human breast cancer cells. J Pharmacol Exp Ther. 2005;313:333–44.

    Article  CAS  PubMed  Google Scholar 

  28. Shin SY, Hyun J, Yu JR, Lim Y, Lee YH. 5-Methoxyflavanone induces cell cycle arrest at the G2/M phase, apoptosis and autophagy in HCT116 human colon cancer cells. Toxicol Appl Pharmacol. 2011;254:288–98.

    Article  CAS  PubMed  Google Scholar 

  29. Evers B, Drost R, Schut E, de Bruin M, van der Burg E, Derksen PW, et al. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin Cancer Res. 2008;14:3916–25.

    Article  CAS  PubMed  Google Scholar 

  30. Weston VJ, Oldreive CE, Skowronska A, Oscier DG, Pratt G, Dyer MJ, et al. The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood. 2010;116:4578–87.

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi M, Koi M, Balaguer F, Boland CR, Goel A. MSH3 mediates sensitization of colorectal cancer cells to cisplatin, oxaliplatin, and a poly(ADP-ribose) polymerase inhibitor. J Biol Chem. 2011;286:12157–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Huehls AM, Wagner JM, Huntoon CJ, Geng L, Erlichman C, Patel AG, et al. Poly(ADP-Ribose) polymerase inhibition synergizes with 5-fluorodeoxyuridine but not 5-fluorouracil in ovarian cancer cells. Cancer Res. 2011;71:4944–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA, et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA. 2008;105:17079–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Catley L, Tai YT, Shringarpure R, Burger R, Son MT, Podar K, et al. Proteasomal degradation of topoisomerase I is preceded by c-Jun NH2-terminal kinase activation, Fas up-regulation, and poly(ADP-ribose) polymerase cleavage in SN38-mediated cytotoxicity against multiple myeloma. Cancer Res. 2004;64:8746–53.

    Article  CAS  PubMed  Google Scholar 

  35. Zander SA, Kersbergen A, van der Burg E, de Water N, van Tellingen O, Gunnarsdottir S, et al. Sensitivity and acquired resistance of BRCA1;p53-deficient mouse mammary tumors to the topoisomerase I inhibitor topotecan. Cancer Res. 2010;70:1700–10.

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100:672–9.

    Article  CAS  PubMed  Google Scholar 

  37. Korkaya H, Paulson A, Iovino F, Wicha MS. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene. 2008;27:6120–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res. 2009;15:4234–41.

    Article  CAS  PubMed  Google Scholar 

  39. Calcagno AM, Salcido CD, Gillet JP, Wu CP, Fostel JM, Mumau MD, et al. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst. 2010;102:1637–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Lee HE, Kim JH, Kim YJ, Choi SY, Kim SW, Kang E, et al. An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Br J Cancer. 2011;104:1730–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

AstraZeneca kindly provided us with olaparib for this study. We thank Dr. Yasumitsu Nishimura and Dr. Takemi Otsuki of the Department of Hygiene, Kawasaki Medical School for their technical advice. We also thank Mrs. Kimiko Hagihara and Ms. Megumi Ogo for their technical assistance. This work was supported by research project grants (22-A9 and 23-18) from Kawasaki Medical School and by a grant from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (23591911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Kurebayashi.

About this article

Cite this article

Shimo, T., Kurebayashi, J., Kanomata, N. et al. Antitumor and anticancer stem cell activity of a poly ADP-ribose polymerase inhibitor olaparib in breast cancer cells. Breast Cancer 21, 75–85 (2014). https://doi.org/10.1007/s12282-012-0356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-012-0356-z

Keywords

Navigation