Skip to main content

Advertisement

Log in

The State-of-the-Art Mycology Laboratory: Visions of the Future

  • Current Management of Fungal Infections (L Ostrosky-Zeichner, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Invasive infections have emerged over the past decades as important causes for morbidity and mortality. Favorable outcome is associated with early and appropriate antifungal treatment. Therefore, rapid and correct diagnosis is of utmost importance. The clinical mycology field has evolved over the past decade. Reference methods for susceptibility testing and associated clinical breakpoints for Candida and Aspergillus have been developed, and several commercial susceptibility tests have been marketed. New diagnostic tests have become available including ELISA and lateral flow devices for the detection of Aspergillus, Candida, and Cryptococcus antigens; β-d-glucan detection test; diagnostic PCRs; and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) techniques for identification and perhaps in the future also for susceptibility screening (testing). Finally, molecular sequencing and genotyping methods have been described and increasingly used for outbreak and resistance detection. Some of these tests are straightforward to implement in the routine laboratory for clinical microbiology, whereas others require mycological expertise. Here, we present an overview of the newer diagnostic options, review options for improving sensitivity of classical diagnostic techniques, and also comment on which levels of mycological expertise are required for the different diagnostic tests. The goal of this review is to summarize current diagnostic options and discuss benefits and pitfalls on how these are best implemented in order to obtain state-of-the-art mycology service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bitar D, Lortholary O, Le Strat Y, Nicolau J, Coignard B, Tattevin P, et al. Population-based analysis of invasive fungal infections, France, 2001–2010. Emerg Infect Dis. 2014;20(7):1149–55.

    PubMed  Google Scholar 

  2. Arendrup MC, Dzajic E, Jensen RH, Johansen HK, Kjaeldgaard P, Knudsen JD, et al. Epidemiological changes with potential implication for antifungal prescription recommendations for fungaemia: data from a nationwide fungaemia surveillance programme. Clin Microbiol Infect. 2013;19(8):E343–53.

    CAS  PubMed  Google Scholar 

  3. Leroy O, Gangneux J-P, Montravers P, Mira J-P, Gouin F, Sollet J-P, et al. Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: a multicenter, prospective, observational study in France (2005–2006). Crit Care Med. 2009;37(5):1612–8.

    PubMed  Google Scholar 

  4. Clancy CJ, Nguyen MH. Finding the “missing 50%” of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis. 2013;56(9):1284–92.

    PubMed  Google Scholar 

  5. Tarrand JJ, Lichterfeld M, Warraich I, Luna M, Han XY, May GS, et al. Diagnosis of invasive septate mold infections: a correlation of microbiological culture and histologic or cytologic examination. Am J Clin Pathol. 2003;119(6):854–8.

    PubMed  Google Scholar 

  6. Arendrup MC, Bille J, Dannaoui E, Ruhnke M, Heussel C-P, Kibbler C. ECIL-3 classical diagnostic procedures for the diagnosis of invasive fungal diseases in patients with leukaemia. Bone Marrow Transplant. 2012;47(8):1030–45.

    CAS  PubMed  Google Scholar 

  7. Lass-Florl C, Resch G, Nachbaur D, Mayr A, Gastl G, Auberger J, et al. The value of computed tomography-guided percutaneous lung biopsy for diagnosis of invasive fungal infection in immunocompromised patients. Clin Infect Dis. 2007;45(7):e101–4.

    PubMed  Google Scholar 

  8. Fraczek MG, Kirwan MB, Moore CB, Morris J, Denning DW, Richardson MD. Volume dependency for culture of fungi from respiratory secretions and increased sensitivity of Aspergillus quantitative PCR. Mycoses. 2014;57(2):69–78.

    PubMed  Google Scholar 

  9. Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, Hope W. EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin Microbiol Infect. 2012;18(7):E246–7.

    CAS  PubMed  Google Scholar 

  10. (CLSI) C and LSI. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard—third edition. M27–A3 ed. 2008.

  11. (CLSI) C and LSI. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard—second edition. Clinical and Laboratory Standards Institute (CLSI). 2009.

  12. Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, Hope WW. Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp. Drug Resist Updat. 2013;16(6):81–95. Elsevier Ltd.

    PubMed  Google Scholar 

  13. Arendrup MC, Hope W, Howard SJ. EUCAST definitive document EDef 9.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. 2014;(July).

  14. Cuenca-Estrella M, Verweij PE, Arendrup MC, Arikan-Akdagli S, Bille J, Donnelly JP, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: diagnostic procedures. Clin Microbiol Infect. 2012;18 Suppl 7:9–18.

    CAS  PubMed  Google Scholar 

  15. Chowdhary A, Meis JF, Guarro J, de Hoog GS, Kathuria S, Arendrup MC, et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clin Microbiol Infect. 2014;20 Suppl 3:47–75.

    CAS  PubMed  Google Scholar 

  16. Cornely OA, Arikan-Akdagli S, Dannaoui E, Groll AH, Lagrou K, Chakrabarti A, et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of mucormycosis 2013. Clin Microbiol Infect. 2014;20 Suppl 3:5–26.

    CAS  PubMed  Google Scholar 

  17. Tortorano AM, Richardson M, Roilides E, van Diepeningen A, Caira M, Munoz P, et al. ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others. Clin Microbiol Infect. 2014;20 Suppl 3:27–46.

    CAS  PubMed  Google Scholar 

  18. Arendrup MC, Boekhout T, Akova M, Meis JF, Cornely OA, Lortholary O. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin Microbiol Infect. 2014;20 Suppl 3:76–98.

    CAS  PubMed  Google Scholar 

  19. Bakare N, Rickerts V, Bargon J, Just-Nübling G. Prevalence of Aspergillus fumigatus and other fungal species in the sputum of adult patients with cystic fibrosis. Mycoses. 2003;46(1–2):19–23.

    CAS  PubMed  Google Scholar 

  20. Andreas S, Heindl S, Wattky C, Möller K, Rüchel R. Diagnosis of pulmonary aspergillosis using optical brighteners. Eur Respir J. 2000;15(2):407–11.

    CAS  PubMed  Google Scholar 

  21. Arendrup MC, Bruun B, Christensen JJ, Fuursted K, Johansen HK, Kjaeldgaard P, et al. National surveillance of fungemia in Denmark (2004 to 2009). J Clin Microbiol. 2011;49(1):325–34.

    PubMed Central  PubMed  Google Scholar 

  22. Sandven P, Bevanger L, Digranes A, Haukland HH, Mannsåker T, Gaustad P. Candidemia in Norway (1991 to 2003): results from a nationwide study. J Clin Microbiol. 2006;44(6):1977–81.

    PubMed Central  PubMed  Google Scholar 

  23. Horvath LL, George BJ, Murray CK, Harrison LS, Hospenthal DR. Direct comparison of the BACTEC 9240 and BacT/ALERT 3D automated blood culture systems for Candida growth detection. J Clin Microbiol. 2004;42(1):115–8.

    PubMed Central  PubMed  Google Scholar 

  24. Arendrup MC, Sulim S, Holm A, Nielsen L, Nielsen SD, Knudsen JD, et al. Diagnostic issues, clinical characteristics, and outcomes for patients with fungemia. J Clin Microbiol. 2011;49(9):3300–8.

    PubMed Central  PubMed  Google Scholar 

  25. Ericson E-L, Klingspor L, Ullberg M, Ozenci V. Clinical comparison of the Bactec Mycosis IC/F, BacT/Alert FA, and BacT/Alert FN blood culture vials for the detection of candidemia. Diagn Microbiol Infect Dis. 2012;73(2):153–6. Elsevier Inc.

    PubMed  Google Scholar 

  26. Cateau E, Cognee A-S, Tran TC, Vallade E, Garcia M, Belaz S, et al. Impact of yeast-bacteria coinfection on the detection of Candida sp. in an automated blood culture system. Diagn Microbiol Infect Dis. 2012;72(4):328–31. Elsevier Inc.

    PubMed  Google Scholar 

  27. Arendrup MC, Chryssanthou E, Gaustad P, Koskela M, Sandven P, Fernandez V. Diagnostics of fungal infections in the Nordic countries: we still need to improve! Scand J Infect Dis. 2007;39(4):337–43.

    PubMed  Google Scholar 

  28. Shepard JR, Addison RM, Alexander BD, Della-Latta P, Gherna M, Haase G, et al. Multicenter evaluation of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of C. albicans and C. glabrata directly from blood culture bottles. J Clin Microbiol. 2008;46(1):50–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Chryssanthou E, Fernandez V, Petrini B. Performance of commercial latex agglutination tests for the differentiation of Candida dubliniensis and Candida albicans in routine diagnostics. APMIS. 2007;115(11):1281–4.

    CAS  PubMed  Google Scholar 

  30. Freydiere A, Buchaille L, Guinet R, Gille Y, Bacte L De. Evaluation of latex reagents for rapid identification of Candida albicans and C. krusei colonies. 1997;35(4):877–80

  31. Freydiere AM, Perry JD, Faure O, Willinger B, Tortorano AM, Nicholson A, et al. Routine use of a commercial test, GLABRATA RTT, for rapid identification of Candida glabrata in six laboratories. J Clin Microbiol. 2004;42(10):4870–2.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Arendrup MC, Perlin DS. Echinocandin resistance: an emerging clinical problem? Curr Opin Infect Dis. 2014 Oct 8

  33. Matsumoto E, Boyken L, Tendolkar S, McDanel J, Castanheira M, Pfaller M, et al. Candidemia surveillance in Iowa: emergence of echinocandin resistance. Diagn Microbiol Infect Dis. 2014;79(2):205–8. Elsevier Inc.

    PubMed  Google Scholar 

  34. Lackner M, Tscherner M, Schaller M, Kuchler K, Mair C, Sartori B, et al. Positions and numbers of FKS mutations in Candida albicans selectively influence in vitro and in vivo susceptibilities to echinocandin treatment. Antimicrob Agents Chemother. 2014;58(7):3626–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Jensen RH, Justesen US, Rewes A, Perlin DS, Arendrup MC. Echinocandin failure case due to a previously unreported FKS1 mutation in Candida krusei. Antimicrob Agents Chemother. 2014;58(6):3550–2.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Desnos-Ollivier M, Bretagne S, Raoux D, Hoinard D, Dromer F, Dannaoui E. Mutations in the fks1 gene in Candida albicans, C. tropicalis, and C. krusei correlate with elevated caspofungin MICs uncovered in AM3 medium using the method of the European Committee on Antibiotic Susceptibility Testing. Antimicrob Agents Chemother. 2008;52(9):3092–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Fekkar A, Dannaoui E, Meyer I, Imbert S, Brossas JY, Uzunov M, et al. Emergence of echinocandin-resistant Candida spp. in a hospital setting: a consequence of 10 years of increasing use of antifungal therapy? Eur J Clin Microbiol Infect Dis. 2014;33(9):1489–96.

    CAS  PubMed  Google Scholar 

  38. Stensvold CR, Jørgensen LN, Arendrup MC. Azole-resistant invasive aspergillosis: relationship to agriculture. Curr Fungal Infect Rep. 2012;6(3):178–91.

    Google Scholar 

  39. Van Der Linden JW, Camps SMT, Kampinga GA, Arends JP, Debets-Ossenkopp YJ, Haas PJ, et al. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin Infect Dis. 2013;57(4):513–20.

    PubMed  Google Scholar 

  40. Chowdhary A, Kathuria S, Randhawa HS, Gaur SN, Klaassen CH, Meis JF. Isolation of multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR/L98H mutations in the cyp51A gene in India. J Antimicrob Chemother. 2012;67(2):362–6.

    CAS  PubMed  Google Scholar 

  41. Astvad KMT, Jensen RH, Hassan TM, Mathiasen EG, Thomsen GM, Pedersen UG, et al. First detection of TR46/Y121F/T289A and TR34/L98H alterations in Aspergillus fumigatus isolates from azole-naive patients in Denmark despite negative findings in the environment. Antimicrob Agents Chemother. 2014;58(9):5096–101.

    CAS  PubMed  Google Scholar 

  42. Badali H, Vaezi A, Haghani I, Yazdanparast SA, Hedayati MT, Mousavi B, et al. Environmental study of azole-resistant Aspergillus fumigatus with TR34/L98H mutations in the cyp51A gene in Iran. Mycoses. 2013;56(6):659–63.

    CAS  PubMed  Google Scholar 

  43. Chowdhary A, Sharma C, van den Boom M, Yntema JB, Hagen F, Verweij PE, et al. Multi-azole-resistant Aspergillus fumigatus in the environment in Tanzania. J Antimicrob Chemother. 2014;69(11):1–5.

    Google Scholar 

  44. Arendrup MC, Pfaller MA. Caspofungin Etest susceptibility testing of Candida species: risk of misclassification of susceptible isolates of C. glabrata and C. krusei when adopting the revised CLSI caspofungin breakpoints. Antimicrob Agents Chemother. 2012;56(7):3965–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Astvad KM, Perlin DS, Johansen HK, Jensen RH, Arendrup MC. Evaluation of caspofungin susceptibility testing by the new Vitek 2 AST-YS06 yeast card using a unique collection of FKS wild-type and hot spot mutant isolates, including the five most common candida species. Antimicrob Agents Chemother. 2013;57(1):177–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Shields RK, Nguyen MH, Press EG, Kwa AL, Cheng S, Du C, et al. The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob Agents Chemother. 2012;56(9):4862–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, Hope WW, Flörl C, Arikan S, et al. EUCAST technical note on Aspergillus and amphotericin B, itraconazole, and posaconazole. Clin Microbiol Infect. 2012;18(7).

  48. Hope WW, Cuenca-Estrella M, Lass-Flörl C, Arendrup MC. EUCAST technical note on voriconazole and Aspergillus spp. Clin Microbiol Infect. 2013;19(6):E278–80.

    CAS  PubMed  Google Scholar 

  49. Pfaller MA, Diekema DJ, Ghannoum MA, Rex JH, Alexander BD, Andes D, et al. Wild-type MIC distribution and epidemiological cutoff values for Aspergillus fumigatus and three triazoles as determined by the Clinical and Laboratory Standards Institute broth microdilution methods. J Clin Microbiol. 2009;47(10):3142–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Mortensen KL, Mellado E, Lass-Flörl C, Rodriguez-Tudela JL, Johansen HK, Arendrup MC. Environmental study of azole-resistant Aspergillus fumigatus and other aspergilli in Austria, Denmark, and Spain. Antimicrob Agents Chemother. 2010;54(11):4545–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Van Leer-Buter C, Takes RP, Hebeda KM, Melchers WJG, Verweij PE. Aspergillosis—and a misleading sensitivity result. Lancet. 2007;370(9581):102.

    PubMed  Google Scholar 

  52. Escribano P, Recio S, Peláez T, González-Rivera M, Bouza E, Guinea J. In vitro acquisition of secondary azole resistance in Aspergillus fumigatus isolates after prolonged exposure to itraconazole: presence of heteroresistant populations. Antimicrob Agents Chemother. 2012;56(1):174–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother. 2014;69(5):1162–76.

    CAS  PubMed  Google Scholar 

  54. Law D, Moore CB, Denning DW. Bioassay for serum itraconazole concentrations using hydroxyitraconazole standards. Antimicrob Agents Chemother. 1994;38(7):1561–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Baietto L, D’Avolio A, Ventimiglia G, De Rosa FG, Siccardi M, Simiele M, et al. Development, validation, and routine application of a high-performance liquid chromatography method coupled with a single mass detector for quantification of itraconazole, voriconazole, and posaconazole in human plasma. Antimicrob Agents Chemother. 2010;54(8):3408–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Alffenaar JWC, Wessels AM, van Hateren K, Greijdanus B, Kosterink JGW, Uges DR, et al. Method for therapeutic drug monitoring of azole antifungal drugs in human serum using LC/MS/MS. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878(1):39–44.

    CAS  Google Scholar 

  57. Beste KY, Burkhardt O, Kaever V. Rapid HPLC-MS/MS method for simultaneous quantitation of four routinely administered triazole antifungals in human plasma. Clin Chim Acta. 2012;413(1–2):240–5. Elsevier B.V.

    CAS  PubMed  Google Scholar 

  58. Decosterd LA, Rochat B, Pesse B, Mercier T, Tissot F, Widmer N, et al. Multiplex ultra-performance liquid chromatography-tandem mass spectrometry method for simultaneous quantification in human plasma of fluconazole, itraconazole, hydroxyitraconazole, posaconazole, voriconazole, voriconazole-N-oxide, anidulafungin, and caspo. Antimicrob Agents Chemother. 2010;54(12):5303–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Zhang M, Moore GA, Barclay ML, Begg EJ. A simple high-performance liquid chromatography method for simultaneous determination of three triazole antifungals in human plasma. Antimicrob Agents Chemother. 2013;57(1):484–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Lempers VJC, Alffenaar JWC, Touw DJ, Burger DM, Uges DR, Aarnoutse RE, et al. Five year results of an international proficiency testing programme for measurement of antifungal drug concentrations. J Antimicrob Chemother. 2014;69(11):2988–94.

    CAS  PubMed  Google Scholar 

  61. Vermeulen E, Verhaegen J, Indevuyst C, Lagrou K. Update on the evolving role of MALDI-TOF MS for laboratory diagnosis of fungal infections. Curr Fungal Infect Rep. 2012;6(3):206–14.

    Google Scholar 

  62. Bader O. MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics. 2013;13(5):788–99.

    CAS  PubMed  Google Scholar 

  63. Posteraro B, De Carolis E, Vella A, Sanguinetti M. MALDI-TOF mass spectrometry in the clinical mycology laboratory: identification of fungi and beyond. Expert Rev Proteomics. 2013;10(2):151–64.

    CAS  PubMed  Google Scholar 

  64. Buchan BW, Ledeboer NA. Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev. 2014;27(4):783–822.

    CAS  PubMed  Google Scholar 

  65. Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL. Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast. J Clin Microbiol. 2011;49(4):1614–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Spanu T, Posteraro B, Fiori B, D’Inzeo T, Campoli S, Ruggeri A, et al. Direct MALDI-TOF mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories. J Clin Microbiol. 2012;50(1):176–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Chen JHK, Ho P-L, Kwan GSW, She KKK, Siu GKH, Cheng VCC, et al. Direct bacterial identification in positive blood cultures by use of two commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry systems. J Clin Microbiol. 2013;51(6):1733–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Fothergill A, Kasinathan V, Hyman J, Walsh J, Drake T, Wang YFW. Rapid identification of bacteria and yeasts from positive-blood-culture bottles by using a lysis-filtration method and matrix-assisted laser desorption ionization-time of flight mass spectrum analysis with the SARAMIS database. J Clin Microbiol. 2013;51(3):805–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Huang AM, Newton D, Kunapuli A, Gandhi TN, Washer LL, Isip J, et al. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis. 2013;57(9):1237–45.

    CAS  PubMed  Google Scholar 

  70. Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Land GA, et al. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med. 2013;137(9):1247–54.

    PubMed  Google Scholar 

  71. Chen JHK, Yam W-C, Ngan AHY, Fung AMY, Woo W-L, Yan M-K, et al. Advantages of using matrix-assisted laser desorption ionization-time of flight mass spectrometry as a rapid diagnostic tool for identification of yeasts and mycobacteria in the clinical microbiological laboratory. J Clin Microbiol. 2013;51(12):3981–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Mancini N, De Carolis E, Infurnari L, Vella A, Clementi N, Vaccaro L, et al. Comparative evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry systems for identification of yeasts of medical importance. J Clin Microbiol. 2013;51(7):2453–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Vlek A, Kolecka A, Khayhan K, Theelen B, Groenewald M, Boel E, et al. Interlaboratory comparison of sample preparation methods, database expansions, and cutoff values for identification of yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry using a yeast test panel. J Clin Microbiol. 2014;52(8):3023–9.

    PubMed Central  PubMed  Google Scholar 

  74. Cassagne C, Cella A-L, Suchon P, Normand A-C, Ranque S, Piarroux R. Evaluation of four pretreatment procedures for MALDI-TOF MS yeast identification in the routine clinical laboratory. Med Mycol. 2013;51(4):371–7.

    CAS  PubMed  Google Scholar 

  75. Van Herendael BH, Bruynseels P, Bensaid M, Boekhout T, De Baere T, Surmont I, et al. Validation of a modified algorithm for the identification of yeast isolates using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Eur J Clin Microbiol Infect Dis. 2012;31(5):841–8.

    CAS  PubMed  Google Scholar 

  76. Bernhard M, Weig M, Zautner AE, Groß U, Bader O. YOTL—a procedure for making auxiliary mass spectrum datasets for clinical routine identification of yeasts using the on-target-lysis method. J Clin Microbiol. 2014 Oct 17;(September).

  77. De Carolis E, Vella A, Vaccaro L, Torelli R, Posteraro P, Ricciardi W, et al. Development and validation of an in-house database for matrix-assisted laser desorption ionization-time of flight mass spectrometry-based yeast identification using a fast protein extraction procedure. J Clin Microbiol. 2014;52(5):1453–8.

    PubMed Central  PubMed  Google Scholar 

  78. Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev. 2013;26(3):547–603.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Sanguinetti M, Posteraro B. MALDI-TOF mass spectrometry: any use for aspergilli? Mycopathologia. 2014 Jul 8;(April).

  80. Cassagne C, Ranque S, Normand A-C, Fourquet P, Thiebault S, Planard C, et al. Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS ONE. 2011;6(12):e28425.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Normand A-C, Cassagne C, Ranque S, L’ollivier C, Fourquet P, Roesems S, et al. Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi. BMC Microbiol. 2013;13:76.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Lau AF, Drake SK, Calhoun LB, Henderson CM, Zelazny AM. Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51(3):828–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Gautier M, Ranque S, Normand A-C, Becker P, Packeu A, Cassagne C, et al. MALDI-TOF mass spectrometry: revolutionising clinical laboratory diagnosis of mould infections. Clin Microbiol Infect. 2014;4.

  84. Theel ES, Hall L, Mandrekar J, Wengenack NL. Dermatophyte identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49(12):4067–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. De Respinis S, Tonolla M, Pranghofer S, Petrini L, Petrini O, Bosshard PP. Identification of dermatophytes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Med Mycol. 2013;51(5):514–21.

    PubMed  Google Scholar 

  86. Posteraro B, Vella A, Cogliati M, De Carolis E, Florio AR, Posteraro P, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for discrimination between molecular types of Cryptococcus neoformans and Cryptococcus gattii. J Clin Microbiol. 2012;50(7):2472–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. De Carolis E, Hensgens LA, Vella A, Posteraro B, Sanguinetti M, Senesi S, et al. Identification and typing of the Candida parapsilosis complex: MALDI-TOF MS vs. AFLP. Med Mycol. 2014;52(2):123–30.

    PubMed  Google Scholar 

  88. Marinach C, Alanio A, Palous M, Kwasek S, Fekkar A, Brossas J-Y, et al. MALDI-TOF MS-based drug susceptibility testing of pathogens: the example of Candida albicans and fluconazole. Proteomics. 2009;9(20):4627–31.

    CAS  PubMed  Google Scholar 

  89. De Carolis E, Vella A, Florio AR, Posteraro P, Perlin DS, Sanguinetti M, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species. J Clin Microbiol. 2012;50(7):2479–83.

    PubMed Central  PubMed  Google Scholar 

  90. Vella A, De Carolis E, Vaccaro L, Posteraro P, Perlin DS, Kostrzewa M, et al. Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. J Clin Microbiol. 2013;51(9):2964–9.

    PubMed Central  PubMed  Google Scholar 

  91. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21.

    PubMed Central  PubMed  Google Scholar 

  92. White PL, Bretagne S, Klingspor L, Melchers WJG, McCulloch E, Schulz B, et al. Aspergillus PCR: one step closer to standardization. J Clin Microbiol. 2010;48(4):1231–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Harrison E, Stalhberger T, Whelan R, Sugrue M, Wingard JR, Alexander BD, et al. Aspergillus DNA contamination in blood collection tubes. Diagn Microbiol Infect Dis. 2010;67(4):392–4. Elsevier Inc.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Mrazek C, Lass-Flörl C. Biopsy procedures for molecular tissue diagnosis of invasive fungal infections. Curr Infect Dis Rep. 2011;13(6):504–9.

    PubMed  Google Scholar 

  95. Avni T, Leibovici L, Paul M. PCR diagnosis of invasive candidiasis: systematic review and meta-analysis. J Clin Microbiol. 2011;49(2):665–70.

    PubMed Central  PubMed  Google Scholar 

  96. McMullan R, Metwally L, Coyle PV, Hedderwick S, McCloskey B, O’Neill HJ, et al. A prospective clinical trial of a real-time polymerase chain reaction assay for the diagnosis of candidemia in nonneutropenic, critically ill adults. Clin Infect Dis. 2008;46(6):890–6.

    CAS  PubMed  Google Scholar 

  97. Fortún J, Martín-Dávila P, de la Pedrosa Gómez-García E, Pintado V, Cobo J, Fresco G, et al. Emerging trends in candidemia: a higher incidence but a similar outcome. J Infect. 2012;65(1):64–70.

    PubMed  Google Scholar 

  98. Nguyen MH, Wissel MC, Shields RK, Salomoni MA, Hao B, Press EG, et al. Performance of Candida real-time polymerase chain reaction, β-D-glucan assay, and blood cultures in the diagnosis of invasive candidiasis. Clin Infect Dis. 2012;54(9):1240–8.

    CAS  PubMed  Google Scholar 

  99. Mengoli C, Cruciani M, Barnes RA, Loeffler J, Donnelly JP. Use of PCR for diagnosis of invasive aspergillosis: systematic review and meta-analysis. Lancet Infect Dis. 2009;9(2):89–96.

    CAS  PubMed  Google Scholar 

  100. Zou M, Tang L, Zhao S, Zhao Z, Chen L, Chen P, et al. Systematic review and meta-analysis of detecting galactomannan in bronchoalveolar lavage fluid for diagnosing invasive aspergillosis. PLoS ONE. 2012;7(8):e43347.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Guinea J, Padilla C, Escribano P, Muñoz P, Padilla B, Gijón P, et al. Evaluation of MycAssay™ Aspergillus for diagnosis of invasive pulmonary aspergillosis in patients without hematological cancer. PLoS ONE. 2013;8(4):e61545.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. White PL, Parr C, Thornton C, Barnes RA. Evaluation of real-time PCR, galactomannan enzyme-linked immunosorbent assay (ELISA), and a novel lateral-flow device for diagnosis of invasive aspergillosis. J Clin Microbiol. 2013;51(5):1510–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Dierkes C, Ehrenstein B, Siebig S, Linde H-J, Reischl U, Salzberger B. Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis. BMC Infect Dis. 2009;9:126.

    PubMed Central  PubMed  Google Scholar 

  104. Lamoth F, Jaton K, Prod’hom G, Senn L, Bille J, Calandra T, et al. Multiplex blood PCR in combination with blood cultures for improvement of microbiological documentation of infection in febrile neutropenia. J Clin Microbiol. 2010;48(10):3510–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Von Lilienfeld-Toal M, Lehmann LE, Raadts AD, Hahn-Ast C, Orlopp KS, Marklein G, et al. Utility of a commercially available multiplex real-time PCR assay to detect bacterial and fungal pathogens in febrile neutropenia. J Clin Microbiol. 2009;47(8):2405–10.

    Google Scholar 

  106. Westh H, Lisby G, Breysse F, Böddinghaus B, Chomarat M, Gant V, et al. Multiplex real-time PCR and blood culture for identification of bloodstream pathogens in patients with suspected sepsis. Clin Microbiol Infect. 2009;15(6):544–51.

    CAS  PubMed  Google Scholar 

  107. Yanagihara K, Kitagawa Y, Tomonaga M, Tsukasaki K, Kohno S, Seki M, et al. Evaluation of pathogen detection from clinical samples by real-time polymerase chain reaction using a sepsis pathogen DNA detection kit. Crit Care. 2010;14(4):R159.

    PubMed Central  PubMed  Google Scholar 

  108. Casalta JP, Gouriet F, Roux V, Thuny F, Habib G, Raoult D. Evaluation of the LightCycler SeptiFast test in the rapid etiologic diagnostic of infectious endocarditis. Eur J Clin Microbiol Infect Dis. 2009;28(6):569–73.

    CAS  PubMed  Google Scholar 

  109. Fernández ÁL, Varela E, Martínez L, Martínez A, Sierra J, González-Juanatey JR, et al. Evaluation of a multiplex real-time PCR assay for detecting pathogens in cardiac valve tissue in patients with endocarditis. Rev Esp Cardiol. 2010;63(10):1205–8. English Ed.

    PubMed  Google Scholar 

  110. Josefson P, Strålin K, Ohlin A, Ennefors T, Dragsten B, Andersson L, et al. Evaluation of a commercial multiplex PCR test (SeptiFast) in the etiological diagnosis of community-onset bloodstream infections. Eur J Clin Microbiol Infect Dis. 2011;30(9):1127–34.

    CAS  PubMed  Google Scholar 

  111. Lefort A, Chartier L, Sendid B, Wolff M, Mainardi J-L, Podglajen I, et al. Diagnosis, management and outcome of Candida endocarditis. Clin Microbiol Infect. 2012;18(4):E99–109.

    CAS  PubMed  Google Scholar 

  112. Palomares JC, Bernal S, Marín M, Holgado VP, Castro C, Morales WP, et al. Molecular diagnosis of Aspergillus fumigatus endocarditis. Diagn Microbiol Infect Dis. 2011;70(4):534–7. Elsevier Inc.

    PubMed  Google Scholar 

  113. Lass-Flörl C, Follett SA, Moody A, Denning DW. Detection of Aspergillus in lung and other tissue samples using the MycAssay Aspergillus real-time PCR kit. Can J Microbiol. 2011;57(9):765–8.

    PubMed  Google Scholar 

  114. Torelli R, Sanguinetti M, Moody A, Pagano L, Caira M, De Carolis E, et al. Diagnosis of invasive aspergillosis by a commercial real-time PCR assay for Aspergillus DNA in bronchoalveolar lavage fluid samples from high-risk patients compared to a galactomannan enzyme immunoassay. J Clin Microbiol. 2011;49(12):4273–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. White PL, Perry MD, Moody A, Follett SA, Morgan G, Barnes RA. Evaluation of analytical and preliminary clinical performance of Myconostica MycAssay Aspergillus when testing serum specimens for diagnosis of invasive aspergillosis. J Clin Microbiol. 2011;49(6):2169–74.

    PubMed Central  PubMed  Google Scholar 

  116. Tavanti A, Davidson AD, Gow NAR, Maiden MCJ, Odds FC. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol. 2005;43(1):284–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Balajee SA, Gribskov JL, Hanley E, Nickle D, Marr KA. Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryot Cell. 2005;4(3):625–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Escribano P, Peláez T, Muñoz P, Bouza E, Guinea J, Munoz P. Is azole resistance in Aspergillus fumigatus a problem in Spain? Antimicrob Agents Chemother. 2013;57(6):2815–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Balajee SA, Borman AM, Brandt ME, Cano J, Cuenca-Estrella M, Dannaoui E, et al. Sequence-based identification of Aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: where are we and where should we go from here? J Clin Microbiol. 2009;47(4):877–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Sanglard D, Ischer F, Koymans L, Bille J. Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother. 1998;42(2):241–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Alexander BD, Johnson MD, Pfeiffer CD, Jiménez-Ortigosa C, Catania J, Booker R, et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis. 2013;56(12):1724–32.

    PubMed Central  PubMed  Google Scholar 

  122. Arendrup MC, Garcia-Effron G, Buzina W, Mortensen KL, Reiter N, Lundin C, et al. Breakthrough Aspergillus fumigatus and Candida albicans double infection during caspofungin treatment: laboratory characteristics and implication for susceptibility testing. Antimicrob Agents Chemother. 2009;53(3):1185–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Arendrup MC. Update on antifungal resistance in Aspergillus and Candida. Clin Microbiol Infect. 2014;20 Suppl 6:42–8.

    CAS  PubMed  Google Scholar 

  124. Pfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD, Lockhart SR, et al. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat. 2011;14(3):164–76. Elsevier Ltd.

    CAS  PubMed  Google Scholar 

  125. Pfaller M, Boyken L, Hollis R, Kroeger J, Messer S, Tendolkar S, et al. Use of epidemiological cutoff values to examine 9-year trends in susceptibility of Aspergillus species to the triazoles. J Clin Microbiol. 2011;49(2):586–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Dudiuk C, Gamarra S, Leonardeli F, Jimenez-Ortigosa C, Vitale RG, Afeltra J, et al. Set of classical PCRs for detection of mutations in Candida glabrata FKS genes linked with echinocandin resistance. J Clin Microbiol. 2014;52(7):2609–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Buied A, Moore CB, Denning DW, Bowyer P. High-level expression of cyp51B in azole-resistant clinical aspergillus fumigatus isolates. J Antimicrob Chemother. 2013;68(3):512–4.

    CAS  PubMed  Google Scholar 

  128. Escribano P, Recio S, Peláez T, Bouza E, Guinea J. Aspergillus fumigatus strains with mutations in the cyp51A gene do not always show phenotypic resistance to itraconazole, voriconazole, or posaconazole. Antimicrob Agents Chemother. 2011;55(5):2460–2.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Verweij PE, Howard SJ, Melchers WJG, Denning DW. Azole-resistance in Aspergillus: proposed nomenclature and breakpoints. Drug Resist Updat. 2009;12(6):141–7.

    CAS  PubMed  Google Scholar 

  130. Chowdhary A, Sharma C, Kathuria S, Hagen F, Meis JF. Azole-resistant Aspergillus fumigatus with the environmental TR46/Y121F/T289A mutation in India. J Antimicrob Chemother. 2014;69(2):555–7.

    CAS  PubMed  Google Scholar 

  131. Vermeulen E, Lagrou K, Verweij PE. Azole resistance in Aspergillus fumigatus: a growing public health concern. Curr Opin Infect Dis. 2013;26(6):493–500.

    CAS  PubMed  Google Scholar 

  132. Snelders E, van der Lee HAL, Kuijpers J, Rijs AJMM, Varga J, Samson RA, et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med. 2008;5(11):e219.

    PubMed Central  PubMed  Google Scholar 

  133. De Valk HA, Klaassen CHW, Meis JFGM. Molecular typing of Aspergillus species. Mycoses. 2008;51(6):463–76.

    PubMed  Google Scholar 

  134. Marcos-Zambrano LJ, Escribano P, Bouza E, Guinea J. Use of molecular typing tools for the study of hospital outbreaks of candidemia. Rev Iberoam Micol Rev Iberoam Micol. 2014;31(2):97–103.

    Google Scholar 

  135. Vonberg R-P, Gastmeier P. Nosocomial aspergillosis in outbreak settings. J Hosp Infect. 2006;63(3):246–54.

    PubMed  Google Scholar 

  136. Guinea J, de Viedma García D, Peláez T, Escribano P, Muñoz P, Meis JF, et al. Molecular epidemiology of Aspergillus fumigatus: an in-depth genotypic analysis of isolates involved in an outbreak of invasive aspergillosis. J Clin Microbiol. 2011;49(10):3498–503.

    PubMed Central  PubMed  Google Scholar 

  137. Peláez T, Muñoz P, Guinea J, Valerio M, Giannella M, Klaassen CHW, et al. Outbreak of invasive aspergillosis after major heart surgery caused by spores in the air of the intensive care unit. Clin Infect Dis. 2012;54(3):e24–31.

    PubMed  Google Scholar 

  138. Kuhn DM, Mikherjee PK, Clark TA, Pujol C, Chandra J, Hajjeh RA, et al. Candida parapsilosis characterization in an outbreak setting. Emerg Infect Dis. 2004;10(6):1074–81.

    PubMed Central  PubMed  Google Scholar 

  139. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20(1):133–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Brillowska-Dabrowska A, Schön T, Pannanusorn S, Lönnbro N, Bernhoff L, Bonnedal J, et al. A nosocomial outbreak of Candida parapsilosis in southern Sweden verified by genotyping. Scand J Infect Dis. 2009;41(2):135–42.

    CAS  PubMed  Google Scholar 

  141. Da Silva Ruiz L, Montelli AC, Sugizaki MDF, Da Silva EG, De Batista GCM, Moreira D, et al. Outbreak of fungemia caused by Candida parapsilosis in a neonatal intensive care unit: molecular investigation through microsatellite analysis. Rev Iberoam Micol. 2013;30(2):112–5.

    PubMed  Google Scholar 

  142. Reiss E, Lasker BA, Iqbal NJ, James MJ, Arthington-Skaggs BA. Molecular epidemiology of Candida parapsilosis sepsis from outbreak investigations in neonatal intensive care units. Infect Genet Evol. 2008;8(2):103–9.

    CAS  Google Scholar 

  143. Escribano P, Rodríguez-Créixems M, Sánchez-Carrillo C, Muñoz P, Bouza E, Guinea J. Endemic genotypes of Candida albicans causing fungemia are frequent in the hospital. J Clin Microbiol. 2013;51(7):2118–23.

    PubMed Central  PubMed  Google Scholar 

  144. Maertens J, Verhaegen J, Demuynck H, Brock P, Verhoef G, Vandenberghe P, et al. Autopsy-controlled prospective evaluation of serial screening for circulating galactomannan by a sandwich enzyme-linked immunosorbent assay for hematological patients at risk for invasive aspergillosis. J Clin Microbiol. 1999;37(10):3223–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Maertens J, Theunissen K, Verbeken E, Lagrou K, Verhaegen J, Boogaerts M, et al. Prospective clinical evaluation of lower cut-offs for galactomannan detection in adult neutropenic cancer patients and haematological stem cell transplant recipients. Br J Haematol. 2004;126(6):852–60.

    CAS  PubMed  Google Scholar 

  146. D’Haese J, Theunissen K, Vermeulen E, Schoemans H, De Vlieger G, Lammertijn L, et al. Detection of galactomannan in bronchoalveolar lavage fluid samples of patients at risk for invasive pulmonary aspergillosis: analytical and clinical validity. J Clin Microbiol. 2012;50(4):1258–63.

    PubMed Central  PubMed  Google Scholar 

  147. Meersseman W, Lagrou K, Maertens J, Wilmer A, Hermans G, Vanderschueren S, et al. Galactomannan in bronchoalveolar lavage fluid: a tool for diagnosing aspergillosis in intensive care unit patients. Am J Respir Crit Care Med. 2008;177(1):27–34.

    PubMed  Google Scholar 

  148. Bergeron A, Porcher R, Menotti J, Poirot JL, Chagnon K, Vekhoff A, et al. Prospective evaluation of clinical and biological markers to predict the outcome of invasive pulmonary aspergillosis in hematological patients. J Clin Microbiol. 2012;50(3):823–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Thornton CR. Development of an immunochromatographic lateral-flow device for rapid serodiagnosis of invasive aspergillosis. Clin Vaccine Immunol. 2008;15(7):1095–105.

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Hoenigl M, Prattes J, Spiess B, Wagner J, Prueller F, Raggam RB, et al. Performance of galactomannan, beta-d-glucan, aspergillus lateral-flow device, conventional culture, and PCR tests with bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis. J Clin Microbiol Am Soc Microbiol. 2014;52(6):2039–45.

    CAS  Google Scholar 

  151. Mikulska M, Calandra T, Sanguinetti M, Poulain D, Viscoli C. The use of mannan antigen and anti-mannan antibodies in the diagnosis of invasive candidiasis: recommendations from the Third European Conference on Infections in Leukemia. Crit Care. 2010;14(6):R222.

    PubMed Central  PubMed  Google Scholar 

  152. Oliveri S, Trovato L, Betta P, Romeo MG, Nicoletti G. Experience with the Platelia Candida ELISA for the diagnosis of invasive candidosis in neonatal patients. Clin Microbiol Infect. 2008;14(4):391–3.

    CAS  PubMed  Google Scholar 

  153. Rodríguez-Tudela JL, Arendrup MC, Cuenca-Estrella M, Donnelly JP, Lass-Flörl C. EUCAST breakpoints for antifungals. Drug News Perspect. 2010;23(2):93–7.

    PubMed  Google Scholar 

  154. Arendrup MC, Bergmann OJ, Larsson L, Nielsen HV, Jarløv JO, Christensson B. Detection of candidaemia in patients with and without underlying haematological disease. Clin Microbiol Infect. 2010;16(7):855–62.

    CAS  PubMed  Google Scholar 

  155. Lunel FM, Donnelly JP, van der Lee HAL, Blijlevens NM, Verweij PE. Performance of the new Platelia Candida Plus assays for the diagnosis of invasive Candida infection in patients undergoing myeloablative therapy. Med Mycol. 2011;49(8):848–55.

    PubMed  Google Scholar 

  156. Lunel FMV, Mennink-Kersten MA, Ruegebrink D, van der Lee HA, Donnelly JP, Blijlevens NM, et al. Value of Candida serum markers in patients with invasive candidiasis after myeloablative chemotherapy. Diagn Microbiol Infect Dis. 2009;64(4):408–15.

    PubMed  Google Scholar 

  157. Lunel FMV, Voss A, Kuijper EJ, Gelinck S, Hoogerbrugge PM, Liem KL, et al. Detection of the Candida antigen mannan in cerebrospinal fluid specimens from patients suspected of having Candida meningitis. 2004

  158. Biesbroek JM, Verduyn Lunel FM, Kragt JJ, Amelink GJ, Frijns CJM. Culture-negative Candida meningitis diagnosed by detection of Candida mannan antigen in CSF. Neurology. 2013;81(17):1555–6.

    PubMed  Google Scholar 

  159. Odabasi Z, Mattiuzzi G, Estey E, Kantarjian H, Saeki F, Ridge RJ, et al. b-d-Glucan as a diagnostic adjunct for invasive fungal infections: validation, cutoff development, and performance in patients with acute myelogenous leukemia and myelodysplastic syndrome. 2004;77030:199–205.

  160. Karageorgopoulos DE, Vouloumanou EK, Ntziora F, Michalopoulos A, Rafailidis PI, Falagas ME. β-D-glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin Infect Dis. 2011;52(6):750–70.

    CAS  PubMed  Google Scholar 

  161. Lamoth F, Cruciani M, Mengoli C, Castagnola E, Lortholary O, Richardson M, et al. β-Glucan antigenemia assay for the diagnosis of invasive fungal infections in patients with hematological malignancies: a systematic review and meta-analysis of cohort studies from the Third European Conference on Infections in Leukemia (ECIL-3). Clin Infect Dis. 2012;54(5):633–43.

    PubMed  Google Scholar 

  162. Hanson KE, Pfeiffer CD, Lease ED, Balch AH, Zaas AK, Perfect JR, et al. β-D-glucan surveillance with preemptive anidulafungin for invasive candidiasis in intensive care unit patients: a randomized pilot study. PLoS ONE. 2012;7(8):e42282.

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Poissy J, Sendid B, Damiens S, Ichi Ishibashi K, François N, Kauv M, et al. Presence of Candida cell wall derived polysaccharides in the sera of intensive care unit patients: relation with candidaemia and Candida colonisation. Crit Care. 2014;18(3):R135.

    PubMed Central  PubMed  Google Scholar 

  164. Hage CA, Ribes JA, Wengenack NL, Baddour LM, Assi M, McKinsey DS, et al. A multicenter evaluation of tests for diagnosis of histoplasmosis. Clin Infect Dis. 2011;53(5):448–54.

    PubMed  Google Scholar 

  165. Iriart X, Blanchet D, Menard S, Lavergne R-A, Chauvin P, Adenis A, et al. A complementary tool for management of disseminated Histoplasma capsulatum var. capsulatum infections in AIDS patients. Int J Med Microbiol. 2014;7:16–9.

    Google Scholar 

  166. Kuberski T, Herrig J, Pappagianis D. False-positive IgM serology in coccidioidomycosis. J Clin Microbiol. 2010;48(6):2047–9.

    PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

MC Arendrup reports grants and personal fees from Astellas, grants and personal fees from Gilead, grants and personal fees from Pfizer, and personal fees and other from MSD. B Posteraro and M Sanguinetti both declare no conflicts of interest. J Guinea has received research grants from FIS; speaker honorarium from Astellas, Gilead, Pfizer, Hikma Pharma, United Medical, and MSD; and travel reimbursement from ESCMID and Astellas.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maiken Cavling Arendrup.

Additional information

This article is part of the Topical Collection on Current Management of Fungal Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arendrup, M.C., Posteraro, B., Sanguinetti, M. et al. The State-of-the-Art Mycology Laboratory: Visions of the Future. Curr Fungal Infect Rep 9, 37–51 (2015). https://doi.org/10.1007/s12281-014-0212-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-014-0212-z

Keywords

Navigation