Skip to main content
Log in

Membrane Proteins as a Regulator for Antibiotic Persistence in Gram-Negative Bacteria

  • Review
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Antibiotic treatment failure threatens our ability to control bacterial infections that can cause chronic diseases. Persister bacteria are a subpopulation of physiological variants that becomes highly tolerant to antibiotics. Membrane proteins play crucial roles in all living organisms to regulate cellular physiology. Although a diverse membrane component involved in persistence can result in antibiotic treatment failure, the regulations of antibiotic persistence by membrane proteins has not been fully understood. In this review, we summarize the recent advances in our understanding with regards to membrane proteins in Gram-negative bacteria as a regulator for antibiotic persistence, highlighting various physiological mechanisms in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ago, R., & Shiomi, D. (2019). RodZ: A key-player in cell elongation and cell division in Escherichia coli. AIMS Microbiology, 5, 358–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek, S. H., Li, A. H., & Sassetti, C. M. (2011). Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biology, 9, e1001065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, T. A., Funnell, B. E., & Kornberg, A. (1987). Helicase action of dnaB protein during replication from the Escherichia coli chromosomal origin in vitro. Journal Biological Chemistry, 262, 6877–6885.

    Article  CAS  Google Scholar 

  • Balaban, N. Q., Helaine, S., Lewis, K., Ackermann, M., Aldridge, B., Andersson, D. I., Brynildsen, M. P., Bumann, D., Camilli, A., Collins, J. J., et al. (2019). Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology, 17, 441–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaban, N. Q., & Liu, J. (2019). Evolution under antibiotic treatments: Interplay between antibiotic persistence, tolerance, and resistance. In K. Lewis (Ed.), Persister cells and infectious disease (pp. 1–17). Cham: Springer.

    Google Scholar 

  • Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.

    Article  CAS  PubMed  Google Scholar 

  • Bittner, L. M., Arends, J., & Narberhaus, F. (2017). When, how and why? Regulated proteolysis by the essential FtsH protease in Escherichia coli. Biological Chemistry, 398, 625–635.

    Article  CAS  PubMed  Google Scholar 

  • Brauner, A., Fridman, O., Gefen, O., & Balaban, N. Q. (2016). Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nature Reviews Microbiology, 14, 320–330.

    Article  CAS  PubMed  Google Scholar 

  • Chatterji, D., & Ojha, A. K. (2001). Revisiting the stringent response, ppGpp and starvation signaling. Current Opinion in Microbiology, 4, 160–165.

    Article  CAS  PubMed  Google Scholar 

  • Cheverton, A. M., Gollan, B., Przydacz, M., Wong, C. T., Mylona, A., Hare, S. A., & Helaine, S. (2016). A Salmonella toxin promotes persister formation through acetylation of tRNA. Molecular Cell, 63, 86–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong, S., Chen, C., Ge, H., & Xie, X. S. (2014). Mechanism of transcriptional bursting in bacteria. Cell, 158, 314–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culp, E., & Wright, G. D. (2017). Bacterial proteases, untapped antimicrobial drug targets. The Journal of Antibiotics, 70, 366–377.

    Article  CAS  PubMed  Google Scholar 

  • Dörr, T., Lewis, K., & Vulić, M. (2009). SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genetics, 5, e1000760.

    Article  PubMed  PubMed Central  Google Scholar 

  • Erbse, A., Schmidt, R., Bornemann, T., Schneider-Mergener, J., Mogk, A., Zahn, R., Dougan, D. A., & Bukau, B. (2006). ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature, 439, 753–756.

    Article  CAS  PubMed  Google Scholar 

  • Fernández De Henestrosa, A. R., Ogi, T., Aoyagi, S., Chafin, D., Hayes, J. J., Ohmori, H., & Woodgate, R. (2000). Identification of additional genes belonging to the LexA regulon in Escherichia coli. Molecular Microbiology, 35, 1560–1572.

    Article  PubMed  Google Scholar 

  • Fisher, R. A., Gollan, B., & Helaine, S. (2017). Persistent bacterial infections and persister cells. Nature Reviews Microbiology, 15, 453–464.

    Article  CAS  PubMed  Google Scholar 

  • Garvey, N., St John, A. C., & Witkin, E. M. (1985). Evidence for RecA protein association with the cell membrane and for changes in the levels of major outer membrane proteins in SOS-induced Escherichia coli cells. Journal of Bacteriology, 163, 870–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerdes, K., & Wagner, E. G. H. (2007). RNA antitoxins. Current Opinion in Microbiology, 10, 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Germain, E., Castro-Roa, D., Zenkin, N., & Gerdes, K. (2013). Molecular mechanism of bacterial persistence by HipA. Molecular Cell, 52, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Gur, E., Biran, D., & Ron, E. Z. (2011). Regulated proteolysis in Gram-negative bacteria – How and when? Nature Reviews Microbiology, 9, 839–848.

    Article  CAS  PubMed  Google Scholar 

  • Harms, A., Maisonneuve, E., & Gerdes, K. (2016). Mechanisms of bacterial persistence during stress and antibiotic exposure. Science, 354, aaf4268.

    Article  PubMed  Google Scholar 

  • Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T., & Gerdes, K. (2015). Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nature Reviews Microbiology, 13, 298–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humbard, M. A., Surkov, S., De Donatis, G. M., Jenkins, L. M., & Maurizi, M. R. (2013). The N-degradome of Escherichia coli. The Journal of Biological Chemistry, 288, 28913–28924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irving, S. E., Choudhury, N. R., & Corrigan, R. M. (2021). The stringent response and physiological roles of (pp)pGpp in bacteria. Nature Reviews Microbiology, 19, 256–271.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, H. M., Eng, T., Chubukov, V., Herbert, R. A., & Mukhopadhyay, A. (2017). Improving membrane protein expression and function using genomic edits. Scientific Reports, 7, 13030.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung, S. H., Ryu, C. M., & Kim, J. S. (2019). Bacterial persistence: Fundamentals and clinical importance. Journal of Microbiology, 57, 829–835.

    Article  PubMed  Google Scholar 

  • Kanjee, U., Ogata, K., & Houry, W. A. (2012). Direct binding targets of the stringent response alarmone (p)ppGpp. Molecular Microbiology, 85, 1029–1043.

    Article  CAS  PubMed  Google Scholar 

  • Kirstein, J., Hoffmann, A., Lilie, H., Schmidt, R., Rübsamen-Waigmann, H., Brötz-Oesterhelt, H., Mogk, A., & Turgay, K. (2009). The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Molecular Medicine, 1, 37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: From targets to networks. Nature Reviews Microbiology, 8, 423–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korch, S. B., Henderson, T. A., & Hill, T. M. (2003). Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Molecular Microbiology, 50, 1199–1213.

    Article  CAS  PubMed  Google Scholar 

  • Lee, E. J., Pontes, M. H., & Groisman, E. A. (2013). A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium’s own F1Fo ATP synthase. Cell, 154, 146–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin-Reisman, I., Ronin, I., Gefen, O., Braniss, I., Shoresh, N., & Balaban, N. Q. (2017). Antibiotic tolerance facilitates the evolution of resistance. Science, 355, 826–830.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L. F., & Wang, J. C. (1987). Supercoiling of the DNA template during transcription. Proceedings of the National Academy of Sciences of the United States of America, 84, 7024–7027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda, H., Tan, Q., Awano, N., Wu, K. P., & Inouye, M. (2012). YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Molecular Microbiology, 84, 979–989.

    Article  CAS  PubMed  Google Scholar 

  • May, K. L., & Grabowicz, M. (2018). The bacterial outer membrane is an evolving antibiotic barrier. Proceedings of the National Academy of Sciences of the United States of America, 115, 8852–8854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mechold, U., Potrykus, K., Murphy, H., Murakami, K. S., & Cashel, M. (2013). Differential regulation by ppGpp versus pppGpp in Escherichia coli. Nucleic Acids Research, 41, 6175–6189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussouni, M., Nogaret, P., Garai, P., Ize, B., Vivès, E., & Blanc-Potard, A. B. (2019). Activity of a synthetic peptide targeting MgtC on Pseudomonas aeruginosa intramacrophage survival and biofilm formation. Frontiers in Cellular and Infection Microbiology, 9, 84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olvera, M. R., Garai, P., Mongin, G., Vives, E., Gannoun-Zaki, L., & Blanc-Potard, A. B. (2019). Synthetic hydrophobic peptides derived from MgtR weaken Salmonella pathogenicity and work with a different mode of action than endogenously produced peptides. Scientific Reports, 9, 15253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Page, R., & Peti, W. (2016). Toxin-antitoxin systems in bacterial growth arrest and persistence. Nature Chemical Biology, 12, 208–214.

    Article  CAS  PubMed  Google Scholar 

  • Pantua, H., Skippington, E., Braun, M. G., Noland, C. L., Diao, J. Y., Peng, Y. T., Gloor, S. L., Yan, D. H., Kang, L., Katakam, A. K., et al. (2020). Unstable mechanisms of resistance to inhibitors of Escherichia coli lipoprotein signal peptidase. mBio, 11, e02018-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen, K., & Gerdes, K. (1999). Multiple hok genes on the chromosome of Escherichia coli. Molecular Microbiology, 32, 1090–1102.

    Article  CAS  PubMed  Google Scholar 

  • Piddock, L. J. V. (2006). Multidrug-resistance efflux pumps? not just for resistance. Nature Reviews Microbiology, 4, 629–636.

    Article  CAS  PubMed  Google Scholar 

  • Podlesek, Z., & Žgur Bertok, D. Ž. (2020). The DNA damage inducible SOS response is a key player in the generation of bacterial persister cells and population wide tolerance. Frontiers in Microbiology, 11, 1785.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pontes, M. H., & Groisman, E. A. (2019). Slow growth determines nonheritable antibiotic resistance in Salmonella enterica. Science Signaling, 12, eaax3938.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pontes, M. H., Yeom, J., & Groisman, E. A. (2016). Reducing ribosome biosynthesis promotes translation during low Mg2+ stress. Molecular Cell, 64, 480–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu, Y., Li, Y., Jin, X., Tian, T., Ma, Q., Zhao, Z., Lin, S., Chen, Z., Li, B., Yao, G., et al. (2019). ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Molecular Cell, 73, 143–156.

    Article  CAS  PubMed  Google Scholar 

  • Pu, Y., Zhao, Z., Li, Y., Zou, J., Ma, Q., Zhao, Y., Ke, Y., Zhu, Y., Chen, H., Baker, M. A. B., et al. (2016). Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Molecular Cell, 62, 284–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roghanian, M., Semsey, S., Løbner-Olesen, A., & Jalalvand, F. (2019). (p)ppGpp-mediated stress response induced by defects in outer membrane biogenesis and ATP production promotes survival in Escherichia coli. Scientific Reports, 9, 2934.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roostalu, J., Jõers, A., Luidalepp, H., Kaldalu, N., & Tenson, T. (2008). Cell division in Escherichia coli cultures monitored at single cell resolution. BMC Microbiology, 8, 68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schramm, F. D., Schroeder, K., & Jonas, K. (2020). Protein aggregation in bacteria. FEMS Microbiology Reviews, 4, 54–72.

    Article  Google Scholar 

  • Scott, M., & Hwa, T. (2011). Bacterial growth laws and their applications. Current Opinion in Biotechnology, 22, 559–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, M., Klumpp, S., Mateescu, E. M., & Hwa, T. (2014). Emergence of robust growth laws from optimal regulation of ribosome synthesis. Molecular Systems Biology, 10, 747.

    Article  PubMed  PubMed Central  Google Scholar 

  • Senior, A. E. (1990). The proton-translocating ATPase of Escherichia coli. Annual Review of Biophysics and Biophysical Chemistry, 19, 7–41.

    Article  CAS  PubMed  Google Scholar 

  • Shan, Y., Brown Gandt, A., Rowe, S. E., Deisinger, J. P., Conlon, B. P., & Lewis, K. (2017). ATP-dependent persister formation in Escherichia coli. mBio, 8, e02267-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2, a000414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva, C. D., Hajihosseini, A., Myrick, J., Nole, J., Louie, A., Schmidt, S., & Drusano, G. L. (2018). Effect of linezolid plus bedaquiline against Mycobacterium tuberculosis in log phase, acid phase, and nonreplicating-persister phase in an in vitro assay. Antimicrobial Agents and Chemotherapy, 62, e00856-18.

    CAS  Google Scholar 

  • Smani, Y., Fàbrega, A., Roca, I., Sánchez-Encinales, V., Vila, J., & Pachón, J. (2014). Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 58, 1806–1808.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thisted, T., Sørensen, N. S., Wagner, E. G., & Gerdes, K. (1994). Mechanism of post-segregational killing: Sok antisense RNA interacts with Hok mRNA via its 5′-end single-stranded leader and competes with the 3′-end of Hok mRNA for binding to the mok translational initiation region. EMBO Journal, 13, 1960–1968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tommassen, J. (2010). Assembly of outer-membrane proteins in bacteria and mitochondria. Microbiology, 156, 2587–2596.

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden, J., Reynolds, L. A., Deng, W., Mills, A., Scholz, R., Imami, K., Foster, L. J., Duong, F., & Finlay, B. B. (2016). Salmonella rapidly regulates membrane permeability to survive oxidative stress. mBio, 7, e01238-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verstraeten, N., Knapen, W. J., Kint, C. I., Liebens, V., Van den Bergh, B., Dewachter, L., Michiels, J. E., Fu, Q., David, C. C., Fierro, A. C., et al. (2015). Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Molecular Cell, 59, 9–21.

    Article  CAS  PubMed  Google Scholar 

  • Vogel, J., Argaman, L., Wagner, E. G. H., & Altuvia, S. (2004). The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Current Biology, 14, 2271–2276.

    Article  CAS  PubMed  Google Scholar 

  • Wilmaerts, D., Dewachter, L., De Loose, P.-J., Bollen, C., Verstraeten, N., & Michiels, J. (2019). HokB monomerization and membrane repolarization control persister awakening. Molecular Cell, 75, 1031–1042.

    Article  CAS  PubMed  Google Scholar 

  • Yeom, J., Gao, X., & Groisman, E. A. (2018). Reduction in adaptor amounts establishes degradation hierarchy among protease substrates. Proceedings of the National Academy of Sciences of the United States of America, 115, E4483–E4492.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeom, J., & Groisman, E. A. (2019). Activator of one protease transforms into inhibitor of another in response to nutritional signals. Genes & Development, 33, 1280–1292.

    Article  CAS  Google Scholar 

  • Yeom, J., & Groisman, E. A. (2021a). Low cytoplasmic magnesium increases the specificity of the lon and ClpAP proteases. Journal of Bacteriology, 203, e00143-21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeom, J., & Groisman, E. A. (2021b). Reduced ATP-dependent proteolysis of functional proteins during nutrient limitation speeds the return of microbes to a growth state. Science Signaling, 14, eabc4235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zgurskaya, H. I., López, C. A., & Gnanakaran, S. (2015). Permeability barrier of Gram-negative cell envelopes and approaches to bypass it. ACS Infectious Diseases, 1, 512–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, M., & Dai, X. (2019). Growth suppression by altered (p)ppGpp levels results from non-optimal resource allocation in Escherichia coli. Nucleic Acids Research, 47, 4684–4693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Shu-Sin Chng for comments on the manuscript. This work was supported by the New Faculty Startup Fund from Seoul National University to J.Y. This work was supported by the National Research Foundation Korea Basic Science Research Programs (2021R1C1C1005184, 2020M3A9H5104237 and 2020R1A5A1019023 to J.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juhyun Kim or Jinki Yeom.

Ethics declarations

Conflict of interest

We declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yee, J.X., Kim, J. & Yeom, J. Membrane Proteins as a Regulator for Antibiotic Persistence in Gram-Negative Bacteria. J Microbiol. 61, 331–341 (2023). https://doi.org/10.1007/s12275-023-00024-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00024-w

Keywords

Navigation