Skip to main content
Log in

Cytoplasmic molecular chaperones in Pseudomonas species

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas is widespread in various environmental and host niches. To promote rejuvenation, cellular protein homeostasis must be finely tuned in response to diverse stresses, such as extremely high and low temperatures, oxidative stress, and desiccation, which can result in protein homeostasis imbalance. Molecular chaperones function as key components that aid protein folding and prevent protein denaturation. Pseudomonas, an ecologically important bacterial genus, includes human and plant pathogens as well as growth-promoting symbionts and species useful for bioremediation. In this review, we focus on protein quality control systems, particularly molecular chaperones, in ecologically diverse species of Pseudomonas, including the opportunistic human pathogen Pseudomonas aeruginosa, the plant pathogen Pseudomonas syringae, the soil species Pseudomonas putida, and the psychrophilic Pseudomonas antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, Z., Zaltsman, A., Sinvany-Villalobo, G., and Sakamoto, W. 2005. FtsH proteases in chloroplasts and cyanobacteria. Physiol. Plant. 123, 386–390.

    Article  CAS  Google Scholar 

  • Ainelo, A., Tamman, H., Leppik, M., Remme, J., and Hõrak, R. 2016. The toxin GraT inhibits ribosome biogenesis. Mol. Microbiol. 100, 719–734.

    Article  CAS  PubMed  Google Scholar 

  • Alderson, T.R., Kim, J.H., and Markley, J.L. 2016. Dynamical structures of Hsp70 and Hsp70-Hsp40 complexes. Structure 24, 1014–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali Azam, T., Iwata, A., Nishimura, A., Ueda, S., and Ishihama, A. 1999. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J. Bacteriol. 181, 6361–6370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alix, J.H. 2004. The work of chaperones. In Nierhaus, K.H. and Wilson, D.N. (eds.), Protein Synthesis and Ribosome Structure, pp. 529–562. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

    Google Scholar 

  • Allan, B., Linseman, M., MacDonald, L.A., Lam, J.S., and Kropinski, A. 1988. Heat shock response of Pseudomonas aeruginosa. J. Bacteriol. 170, 3668–3674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arai, H. 2011. Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa. Front. Microbiol. 2, 103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arsène, F., Tomoyasu, T., and Bukau, B. 2000. The heat shock response of Escherichia coli. Int. J. Food Microbiol. 55, 3–9.

    Article  PubMed  Google Scholar 

  • Bittner, L.M., Arends, J., and Narberhaus, F. 2017. When, how and why? Regulated proteolysis by the essential FtsH protease in Escherichia coli. Biol. Chem. 398, 625–635.

    Article  CAS  PubMed  Google Scholar 

  • Boehm, M., Yu, J., Krynicka, V., Barker, M., Tichy, M., Komenda, J., Nixon, P.J., and Nield, J. 2012. Subunit organization of a Synechocystis hetero-oligomeric thylakoid FtsH complex involved in photosystem II repair. Plant Cell. 24, 3669–3683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner, D., Krieg, N., and Staley, J. 2005. Volume Two: The Proteobacteria (Part C). Bergey's Manual of Systematic Bacteriology. Springer, New York, USA.

    Book  Google Scholar 

  • Bröms, J.E., Edqvist, P.J., Forsberg, Å., and Francis, M.S. 2006. Tetratricopeptide repeats are essential for PcrH chaperone function in Pseudomonas aeruginosa type III secretion. FEMS Microbiol. Lett. 256, 57–66.

    Article  PubMed  Google Scholar 

  • Buchner, J. 2019. Molecular chaperones and protein quality control: an introduction to the JBC reviews thematic series. J. Biol. Chem. 294, 2074–2075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chae, C., Sharma, S., Hoskins, J.R., and Wickner, S. 2004. CbpA, a DnaJ homolog, is a DnaK Co-chaperone, and its activity is modulated by CbpM. J. Biol. Chem. 279, 33147–33153.

    Article  CAS  PubMed  Google Scholar 

  • Ciofu, O. and Tolker-Nielsen, T. 2019. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics. Front. Microbiol. 10, 913.

    PubMed  Google Scholar 

  • Clarke, L., Moore, J.E., Millar, B.C., Garske, L., Xu, J., Heuzenroeder, M.W., Crowe, M., and Elborn, J.S. 2003. Development of a diagnostic pcr assay that targets a heat-shock protein gene (groES) for detection of Pseudomonas spp. In cystic fibrosis patients. J. Med. Microbiol. 52, 759–763.

    CAS  PubMed  Google Scholar 

  • Craig, K., Johnson, B.R., and Grunden, A. 2021. Leveraging Pseudomonas stress response mechanisms for industrial applications. Front. Microbiol. 12, 660134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deville, C., Carroni, M., Franke, K.B., Topf, M., Bukau, B., Mogk, A., and Saibil, H.R. 2017. Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase. Sci. Adv. 3, e1701726.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Maayer, P., Anderson, D., Cary, C., and Cowan, D.A. 2014. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 15, 508–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Soyza, A., Hall, A.J., Mahenthiralingam, E., Drevinek, P., Kaca, W., Drulis-Kawa, Z., Stoitsova, S.R., Toth, V., Coenye, T., Zlosnik, J.E., et al. 2013. Developing an international Pseudomonas aeruginosa reference panel. Microbiologyopen. 2, 1010–1023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Diggle, S.P. and Whiteley, M. 2020. Microbe profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology 166, 30–33.

    Article  CAS  PubMed  Google Scholar 

  • Discola, K.F., Förster, A., Boulay, F., Simorre, J.P., Attree, I., Dessen, A., and Job, V. 2014. Membrane and chaperone recognition by the major translocator protein PopB of the type III secretion system of Pseudomonas aeruginosa. J. Biol. Chem. 289, 3591–3601.

    Article  CAS  PubMed  Google Scholar 

  • Dubern, J.F., Lagendijk, E.L., Lugtenberg, B.J.J., and Bloemberg, G.V. 2005. The heat shock genes dnaK, dnaJ, and grpE are involved in regulation of putisolvin biosynthesis in Pseudomonas putida pcl1445. J. Bacteriol. 187, 5967–5976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran, E.C., Weaver, C.L., and Lucius, A.L. 2017. Comparative analysis of the structure and function of AAA+ motors ClpA, ClpB, and Hsp104: common threads and disparate functions. Front. Mol. Biosci. 4, 54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis, R.J. and Hemmingsen, S.M. 1989. Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Bio. Sci. 14, 339–342.

    Article  CAS  Google Scholar 

  • Fernández, M., Porcel, M., de la Torre, J., Molina-Henares, M.A., Daddaoua, A., Llamas, M.A., Roca, A., Carriel, V., Garzón, I., Ramos, J.L., et al. 2015. Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains. Front. Microbiol. 6, 871.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrer, M., Chernikova, T.N., Yakimov, M.M., Golyshin, P.N., and Timmis, K.N. 2003. Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21, 1266–1267.

    Article  CAS  PubMed  Google Scholar 

  • Finck-Barbançon, V., Yahr, T.L., and Frank, D.W. 1998. Identification and characterization of SpcU, a chaperone required for efficient secretion of the ExoU cytotoxin. J. Bacteriol. 180, 6224–6231.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gajdosova, J., Benedikovicova, K., Kamodyova, N., Tothova, L., Kaclikova, E., Stuchlik, S., Turna, J., and Drahovska, H. 2011. Analysis of the DNA region mediating increased thermotolerance at 58°C in Cronobacter sp. and other enterobacterial strains. Antonie van Leeuwenhoek 100, 279–289.

    Article  CAS  PubMed  Google Scholar 

  • Genest, O., Hoskins, J.R., Kravats, A.N., Doyle, S.M., and Wickner, S. 2015. Hsp70 and Hsp90 of E. coli directly interact for collaboration in protein remodeling. J. Mol. Biol. 427, 3877–3889.

    CAS  PubMed  Google Scholar 

  • Genest, O., Wickner, S., and Doyle, S.M. 2019. Hsp90 and Hsp70 chaperones: collaborators in protein remodeling. J. Biol. Chem. 294, 2109–2120.

    Article  CAS  PubMed  Google Scholar 

  • Goodall, E.C.A., Robinson, A., Johnston, I.G., Jabbari, S., Turner, K.A., Cunningham, A.F., Lund, P.A., Cole, J.A., and Henderson, I.R. 2018. The essential genome of Escherichia coli k-12. mBio 9, e02096–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halavaty, A.S., Borek, D., Tyson, G.H., Veesenmeyer, J.L., Shuvalova, L., Minasov, G., Otwinowski, Z., Hauser, A.R., and Anderson, W.F. 2012. Structure of the type III secretion effector protein ExoU in complex with its chaperone SpcU. PLoS ONE 7, e49388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl, F.U., Bracher, A., and Hayer-Hartl, M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332.

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck, M., Franzmann, T., Weinfurtner, D., and Buchner, J. 2005. Some like it hot: the structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12, 842–846.

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck, M. and Vierling, E. 2015. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J. Mol. Biol. 427, 1537–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayer-Hartl, M., Bracher, A., and Hartl, F.U. 2016. The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 41, 62–76.

    Article  CAS  PubMed  Google Scholar 

  • Henson, W.R., Meyers, A.W., Jayakody, L.N., DeCapite, A., Black, B.A., Michener, W.E., Johnson, C.W., and Beckham, G.T. 2021. Biological upgrading of pyrolysis-derived wastewater: engineering Pseudomonas putida for alkylphenol, furfural, and acetone catabolism and (methyl)muconic acid production. Metab. Eng. 68, 14–25.

    Article  CAS  PubMed  Google Scholar 

  • Horovitz, A., Reingewertz, T.H., Cuéllar, J., and Valpuesta, J.M. 2022. Chaperonin mechanisms: multiple and (mis) understood? Annu. Rev Biophys., 51, 115–133.

    Google Scholar 

  • Hunt, J.F., Weaver, A.J., Landry, S.J., Gierasch, L., and Deisenhofer, J. 1996. The crystal structure of the groes co-chaperonin at 2.8 Å resolution. Nature 379, 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Ito, F., Tamiya, T., Ohtsu, I., Fujimura, M., and Fukumori, F. 2014. Genetic and phenotypic characterization of the heat shock response in Pseudomonas putida. Microbiologyopen 3, 922–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh, T., Matsuda, H., and Mori, H. 1999. Phylogenetic analysis of the third Hsp70 homolog in Escherichia coli; a novel member of the Hsc66 subfamily and its possible co-chaperone. DNA Res. 6, 299–305.

    Article  CAS  PubMed  Google Scholar 

  • Job, V., Matteï, P.J., Lemaire, D., Attree, I., and Dessen, A. 2010. Structural basis of chaperone recognition of type III secretion system minor translocator proteins. J. Biol. Chem. 285, 23224–23232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal, S.M., Cimdins-Ahne, A., Lee, C., Li, F., Martín-Rodríguez, A.J., Seferbekova, Z., Afasizhev, R., Wami, H.T., Katikaridis, P., Meins, L., et al. 2021. A recently isolated human commensal Escherichia coli ST10 clone member mediates enhanced thermotolerance and tetrathionate respiration on a P1 phage-derived incy plasmid. Mol. Microbiol. 115, 255–271.

    Article  CAS  PubMed  Google Scholar 

  • Kamal, S.M., Rybtke, M.L., Nimtz, M., Sperlein, S., Giske, C., Trcek, J., Deschamps, J., Briandet, R., Dini, L., and Jänsch, L. 2019. Two FtsH proteases contribute to fitness and adaptation of clone C strains. Front. Microbiol. 10, 1372.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karagöz, G.E. and Rüdiger, S.G. 2015. Hsp90 interaction with clients. Trends Biochem. Sci. 40, 117–125.

    Article  PubMed  Google Scholar 

  • Katikaridis, P., Römling, U., and Mogk, A. 2021. Basic mechanism of the autonomous ClpG disaggregase. J. Biol. Chem. 296, 100460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keith, L.M. and Bender, C.L. 1999. AlgT (ς22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J. Bacteriol. 181, 7176–7184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keith, L.M., Partridge, J.E., and Bender, C.L. 1999. dnaK and the heat stress response of Pseudomonas syringae pv. glycinea. Mol. Plant Microbe Interact. 12, 563–574.

    Article  CAS  PubMed  Google Scholar 

  • Khan, N.H., Ishii, Y., Kimata-Kino, N., Esaki, H., Nishino, T., Nishimura, M., and Kogure, K. 2007. Isolation of Pseudomonas aeruginosa from open ocean and comparison with freshwater, clinical, and animal isolates. Microb. Ecol. 53, 173–186.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.E., Hipp, M.S., Bracher, A., Hayer-Hartl, M., and Ulrich Hartl, F. 2013a. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82, 323–355.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Hong, H., Heo, A., and Park, W. 2013b. Indole toxicity involves the inhibition of adenosine triphosphate production and protein folding in Pseudomonas putida. FEMS Microbiol. Lett. 343, 89–99.

    Article  CAS  PubMed  Google Scholar 

  • Kityk, R., Kopp, J., Sinning, I., and Mayer, M.P. 2012. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48, 863–874.

    Article  CAS  PubMed  Google Scholar 

  • Kluck, C.J., Patzelt, H., Genevaux, P., Brehmer, D., Rist, W., Schneider-Mergener, J., Bukau, B., and Mayer, M.P. 2002. Structure-function analysis of HscC, the Escherichia coli member of a novel subfamily of specialized Hsp70 chaperones. J. Biol. Chem. 277, 41060–41069.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, Y., Ohtsu, I., Fujimura, M., and Fukumori, F. 2011. A mutation in dnaK causes stabilization of the heat shock sigma factor s32, accumulation of heat shock proteins and increase in toluene-resistance in Pseudomonas putida. Environ. Microbiol. 13, 2007–2017.

    Article  CAS  PubMed  Google Scholar 

  • Krajewski, S.S., Joswig, M., Nagel, M., and Narberhaus, F. 2014. A tricistronic heat shock operon is important for stress tolerance of Pseudomonas putida and conserved in many environmental bacteria. Environ. Microbiol. 16, 1835–1853.

    Article  CAS  PubMed  Google Scholar 

  • Krajewski, S.S., Nagel, M., and Narberhaus, F. 2013. Short ROSElike RNA thermometers control IbpA synthesis in Pseudomonas species. PLoS ONE 8, e65168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriehuber, T., Rattei, T., Weinmaier, T., Bepperling, A., Haslbeck, M., and Buchner, J. 2010. Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J. 24, 3633–3642.

    Article  CAS  PubMed  Google Scholar 

  • Kriss, A.E., Mitskevich, I.N., Rozanova, E.P., and Osnitskaia, L.K. 1976. Microbiological studies of the wanda lake (Antarctica). Mikrobiologiia 45, 1075–1081.

    CAS  PubMed  Google Scholar 

  • Krukenberg, K.A., Förster, F., Rice, L.M., Sali, A., and Agard, D.A. 2008. Multiple conformations of E. coli Hsp90 in solution: Insights into the conformational dynamics of Hsp90. Structure 16, 755–765.

    CAS  PubMed  Google Scholar 

  • Kuhn, E. 2012. Toward understanding life under subzero conditions: the significance of exploring psychrophilic “cold-shock” proteins. Astrobiology 12, 1078–1086.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Suyal, D.C., Yadav, A., Shouche, Y., and Goel, R. 2020. Psychrophilic Pseudomonas helmanticensis proteome under simulated cold stress. Cell Stress Chaperones 25, 1025–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurbatov, L., Albrecht, D., Herrmann, H., and Petruschka, L. 2006. Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy. Environ. Microbiol. 8, 466–478.

    Article  CAS  PubMed  Google Scholar 

  • Langer, T., Lu, C., Echols, H., Flanagan, J., Hayer, M.K., and Hartl, F.U. 1992. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356, 683–689.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Cho, Y.J., Yang, J.Y., Jung, Y.J., Hong, S.G., and Kim, O.S. 2017. Complete genome sequence of Pseudomonas antarctica PAMC 27494, a bacteriocin-producing psychrophile isolated from Antarctica. J. Biotechnol. 259, 15–18.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C., Franke, K.B., Kamal, S.M., Kim, H., Lünsdorf, H., Jäger, J., Nimtz, M., Trcek, J., Jänsch, L., Bukau, B., et al. 2018. Stand-alone ClpG disaggregase confers superior heat tolerance to bacteria. Proc. Natl. Acad. Sci. 115, E273–E282.

    CAS  PubMed  Google Scholar 

  • Lee, C., Klockgether, J., Fischer, S., Trcek, J., Tümmler, B., and Römling, U. 2020. Why?-successful Pseudomonas aeruginosa clones with a focus on clone C. FEMS Microbiol. Rev. 44, 740–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S., Sowa, M.E., Watanabe, Y., Sigler, P.B., Chiu, W., Yoshida, M., and Tsai, F.T. 2003. The structure of ClpB: A molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C., Wigren, E., Lünsdorf, H., and Römling, U. 2016. Protein homeostasis-more than resisting a hot bath. Curr. Opin. Microbiol. 30, 147–154.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C., Wigren, E., Trcek, J., Peters, V., Kim, J., Hasni, M.S., Nimtz, M., Lindqvist, Y., Park, C., Curth, U., et al. 2015. A novel protein quality control mechanism contributes to heat shock resistance of worldwide-distributed Pseudomonas aeruginosa clone C strains. Environ. Microbiol. 17, 4511–4526.

    Article  CAS  PubMed  Google Scholar 

  • Li, S.S., Hu, X., Zhao, H., Li, Y.X., Zhang, L., Gong, L.J., Guo, J., and Zhao, H.B. 2015. Quantitative analysis of cellular proteome alterations of Pseudomonas putida to naphthalene-induced stress. Biotechnol. Lett. 37, 1645–1654.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Mercer, R., Behr, J., Heinzlmeir, S., McMullen, L.M., Vogel, R.F., and Gänzle, M.G. 2020. Heat and pressure resistance in Escherichia coli relates to protein folding and aggregation. Front. Microbiol. 11, 111.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, J., Soroka, J., and Buchner, J. 2012. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim. Biophys. Acta 1823, 624–635.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Z., Madan, D., and Rye, H.S. 2008. GroEL stimulates protein folding through forced unfolding. Nature Struct. Mol. Biol. 15, 303–311.

    Article  CAS  Google Scholar 

  • Lindow, S.E., Arny, D.C., and Upper, C.D. 1982. Bacterial ice nucleation: a factor in frost injury to plants. Plant Physiol. 70, 1084–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipińska, N., Zietkiewicz, S., Sobczak, A., Jurczyk, A., Potocki, W., Morawiec, E., Wawrzycka, A., Gumowski, K., Slusarz, M., Rodziewicz-Motowidlo, S., et al. 2013. Disruption of ionic interactions between the nucleotide binding domain 1 (NBD1) and middle (M) domain in Hsp100 disaggregase unleashes toxic hyperactivity and partial independence from Hsp70. J. Biol. Chem. 288, 2857–2869.

    Article  PubMed  Google Scholar 

  • Lopez, T., Dalton, K., and Frydman, J. 2015. The mechanism and function of group II chaperonins. J. Mol. Biol. 427, 2919–2930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lüthi, E., Baur, H., Gamper, M., Brunner, F., Villeval, D., Mercemier, A., and Haas, D. 1990. The arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa contains an additional gene, arcD, encoding a membrane protein. Gene 87, 37–43.

    Article  PubMed  Google Scholar 

  • Manaia, C.M. and Moore, E.R. 2002. Pseudomonas thermotolerans sp. nov. a thermotolerant species of the genus Pseudomonas sensu stricto. Int. J. Syst. Evol. Microbiol., 52, 2203–2209.

    CAS  PubMed  Google Scholar 

  • March, Z.M., Sweeney, K., Kim, H., Yan, X., Castellano, L.M., Jackrel, M.E., Lin, J., Chuang, E., Gomes, E., Willicott, C.W., et al. 2020. Therapeutic genetic variation revealed in diverse Hsp104 homologs. eLife 9, e57457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markel, E., Stodghill, P., Bao, Z., Myers, C.R., and Swingle, B. 2016. Algu controls expression of virulence genes in Pseudomonas syringae pv tomato DC3000. J. Bacteriol. 198, 2330–2344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matilla, M.A., Pizarro-Tobias, P., Roca, A., Fernández, M., Duque, E., Molina, L., Wu, X., van der Lelie, D., Gómez, M.J., Segura, A., et al. 2011. Complete genome of the plant growth-promoting rhizobacterium Pseudomonas putida BIRD-1. J. Bacteriol. 193, 1290–1290.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, M.P. 2013. Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem. Sci. 38, 507–514.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, M.P. and Le Breton, L. 2015. Hsp90: Breaking the symmetry. Mol. Cell 58, 8–20.

    Article  CAS  PubMed  Google Scholar 

  • Mercer, R.G., Zheng, J., Garcia-Hernandez, R., Ruan, L., Gänzle, M.G., and McMullen, L.M. 2015. Genetic determinants of heat resistance in Escherichia coli. Front. Microbiol. 6, 932.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer, A.S. and Baker, T.A. 2011. Proteolysis in the Escherichia coli heat shock response: a player at many levels. Curr. Opin. Microbiol. 14, 194–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migula, W. 1894. Über ein neues system Der Bakterien. Arbeiten AUS dem Bakteriologischen Institut Der Technischen Hochschule zu Karlsruhe., 1, 235–238.

    Google Scholar 

  • Mogk, A., Bukau, B., and Kampinga, H.H. 2018. Cellular handling of protein aggregates by disaggregation machines. Mol. Cell 69, 214–226.

    Article  CAS  PubMed  Google Scholar 

  • Mogk, A., Ruger-Herreros, C., and Bukau, B. 2019. Cellular functions and mechanisms of action of small heat shock proteins. Annu. Rev. Microbiol. 73, 89–110.

    Article  CAS  PubMed  Google Scholar 

  • Mogk, A., Schlieker, C., Strub, C., Rist, W., Weibezahn, J., and Bukau, B. 2003. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. J. Biol. Chem. 278, 17615–17624.

    Article  CAS  PubMed  Google Scholar 

  • Nikel, P.I. and de Lorenzo, V. 2018. Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. Metab. Eng. 50, 142–155.

    Article  CAS  PubMed  Google Scholar 

  • Oguchi, Y., Kummer, E., Seyffer, F., Berynskyy, M., Anstett, B., Zahn, R., Wade, R.C., Mogk, A., and Bukau, B. 2012. A tightly regulated molecular toggle controls AAA+ disaggregase. Nat. Struct. Mol. Biol. 19, 1338–1346.

    Article  CAS  PubMed  Google Scholar 

  • Piette, F., Struvay, C., and Feller, G. 2011. The protein folding challenge in psychrophiles: facts and current issues. Environ. Microbiol. 13, 1924–1933.

    Article  CAS  PubMed  Google Scholar 

  • Pirnay, J.P., Matthijs, S., Colak, H., Chablain, P., Bilocq, F., Van Eldere, J., De Vos, D., Zizi, M., Triest, L., and Cornelis, P. 2005. Global Pseudomonas aeruginosa biodiversity as reflected in a belgian river. Environ. Microbiol. 7, 969–980.

    Article  CAS  PubMed  Google Scholar 

  • Preissler, S. and Deuerling, E. 2012. Ribosome-associated chaperones as key players in proteostasis. Trends Biochem. Sci. 37, 274–283.

    Article  CAS  PubMed  Google Scholar 

  • Radli, M. and Rüdiger, S.G.D. 2018. Dancing with the Diva: Hsp90-client interactions. J. Mol. Biol. 430, 3029–3040.

    Article  CAS  PubMed  Google Scholar 

  • Rahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., and Ausubel, F.M. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899–1902.

    Article  CAS  PubMed  Google Scholar 

  • Rangeshwaran, R., Ashwitha, K., Sivakumar, G., and Jalali, S.K. 2013. Analysis of proteins expressed by an abiotic stress tolerant Pseudomonas putida (NBAII-RPF9) isolate under saline and high temperature conditions. Curr. Microbiol. 67, 659–667.

    Article  CAS  PubMed  Google Scholar 

  • Ray, M., Kumar, G.S., and Shivaji, S. 1994. Phosphorylation of membrane proteins in response to temperature in an antarctic Pseudomonas syringae. Microbiology 140, 3217–3223.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, G.S., Matsumoto, G.I., Schumann, P., Stackebrandt, E., and Shivaji, S. 2004. Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov. Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int. J. Syst. Evol. Microbiol. 54, 713–719.

    Article  CAS  PubMed  Google Scholar 

  • Roca, A., Pizarro-Tobías, P., Udaondo, Z., Fernández, M., Matilla, M.A., Molina-Henares, M.A., Molina, L., Segura, A., Duque, E., and Ramos, J.L. 2013. Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD-1. Environ. Microbiol. 15, 780–794.

    Article  CAS  PubMed  Google Scholar 

  • Röhl, A., Rohrberg, J., and Buchner, J. 2013. The chaperone Hsp90: changing partners for demanding clients. Trends Biochem. Sci. 38, 253–262.

    Article  PubMed  Google Scholar 

  • Rosendahl, S., Ainelo, A., and Hõrak, R. 2021. The disordered Cterminus of the chaperone DnaK increases the competitive fitness of Pseudomonas putida and facilitates the toxicity of GraT. Microorganisms 9, 375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenzweig, R., Moradi, S., Zarrine-Afsar, A., Glover, J.R., and Kay, L.E. 2013. Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. Science 339, 1080–1083.

    Article  CAS  PubMed  Google Scholar 

  • Saibil, H.R., Fenton, W.A., Clare, D.K., and Horwich, A.L. 2013. Structure and allostery of the chaperonin GroEL. J. Mol. Biol. 425, 1476–1487.

    Article  CAS  PubMed  Google Scholar 

  • Santos, P.M., Benndorf, D., and Sá-Correia, I. 2004. Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4, 2640–2652.

    Article  CAS  PubMed  Google Scholar 

  • Santos, D. and De Almeida, D.F. 1975. Isolation and characterization of a new temperature-sensitive cell division mutant of Escherichia coli K-12. J. Bacteriol. 124, 1502–1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlee, S., Groemping, Y., Herde, P., Seidel, R., and Reinstein, J. 2001. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites. J. Mol. Biol. 306, 889–899.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, M., Iversen, C., Gontia, I., Stephan, R., Hofmann, A., Hartmann, A., Jha, B., Eberl, L., Riedel, K., and Lehner, A. 2009. Evidence for a plant-associated natural habitat for Cronobacter spp. Res. Microbiol. 160, 608–614.

    Article  PubMed  Google Scholar 

  • Schroth, M.N., Cho, J.J., Green, S.K., and Kominos, S.D. 2018. Epidemiology of Pseudomonas aeruginosa in agricultural areas. J. Med. Microbiol. 67, 1191–1201.

    Article  PubMed  Google Scholar 

  • Schurr, M. and Deretic, V. 1997. Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa. Mol. Microbiol. 24, 411–420.

    Article  CAS  PubMed  Google Scholar 

  • Seyffer, F., Kummer, E., Oguchi, Y., Winkler, J., Kumar, M., Zahn, R., Sourjik, V., Bukau, B., and Mogk, A. 2012. Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA+ disaggregase at aggregate surfaces. Nat. Struct. Mol. Biol. 19, 1347–1355.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., Chakraborty, K., Müller, B.K., Astola, N., Tang, Y.C., Lamb, D.C., Hayer-Hartl, M., and Hartl, F.U. 2008. Monitoring protein conformation along the pathway of chaperonin-assisted folding. Cell 133, 142–153.

    Article  CAS  PubMed  Google Scholar 

  • Shiau, A.K., Harris, S.F., Southworth, D.R., and Agard, D.A. 2006. Structural analysis of E. coli Hsp90 reveals dramatic nucleotidedependent conformational rearrangements. Cell 127, 329–340.

    CAS  Google Scholar 

  • Sikor, M., Mapa, K., Von Voithenberg, L.V., Mokranjac, D., and Lamb, D.C. 2013. Real-time observation of the conformational dynamics of mitochondrial Hsp70 by spFRET. EMBO J. 32, 1639–1649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silberg, J.J., Tapley, T.L., Hoff, K.G., and Vickery, L.E. 2004. Regulation of the HscA ATPase reaction cycle by the co-chaperone HscB and the iron-sulfur cluster assembly protein IscU. J. Biol. Chem. 279, 53924–53931.

    Article  CAS  PubMed  Google Scholar 

  • Singh, B. and Gupta, R.S. 2009. Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. Mol. Genet. Genomics 281, 361–373.

    Article  CAS  PubMed  Google Scholar 

  • Tatsuta, T. and Langer, T. 2009. AAA proteases in mitochondria: Diverse functions of membrane-bound proteolytic machines. Res. Microbiol. 160, 711–717.

    Article  CAS  PubMed  Google Scholar 

  • Timmis, K.N., Steffan, R.J., and Unterman, R. 1994. Designing microorganisms for the treatment of toxic wastes. Annu. Rev. Microbiol. 48, 525–558.

    Article  CAS  PubMed  Google Scholar 

  • Tokumoto, U. and Takahashi, Y. 2001. Genetic analysis of the isc operon in Escherichia coli involved in the biogenesis of cellular iron-sulfur proteins. J. Biochem. 130, 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Tomoyasu, T., Gamer, J., Bukau, B., Kanemori, M., Mori, H., Rutman, A., Oppenheim, A., Yura, T., Yamanaka, K., Niki, H., et al. 1995. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor s32. EMBO J. 14, 2551–2560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treweek, T.M., Meehan, S., Ecroyd, H., and Carver, J.A. 2015. Small heat-shock proteins: important players in regulating cellular proteostasis. Cell. Mol. Life Sci. 72, 429–451.

    Article  CAS  PubMed  Google Scholar 

  • Tsuji, A., Kaneko, Y., Takahashi, K., Ogawa, M., and Goto, S. 1982. The effects of temperature and pH on the growth of eight enteric and nine glucose non-fermenting species of Gram-negative rods. Microbiol. Immunol. 26, 15–24.

    Article  CAS  PubMed  Google Scholar 

  • Tyedmers, J., Mogk, A., and Bukau, B. 2010. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11, 777–788.

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi, C., Kakeda, M., Yamada, H., and Mizuno, T. 1994. An analogue of the DnaJ molecular chaperone in Escherichia coli. Proc. Natl. Acad. Sci. USA 91, 1054–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Montfort, R., Slingsby, C., and Vierlingt, E. 2001. Structure and function of the small heat shock protein/a-crystallin family of molecular chaperones. Adv. Protein Chem. 59, 105–156.

    Article  CAS  PubMed  Google Scholar 

  • Vickery, L.E., Silberg, J.J., and Ta, D.T. 1997. Hsc66 and Hsc20, a new heat shock cognate molecular chaperone system from Escherichia coli. Protein Sci. 6, 1047–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volke, D.C., Calero, P., and Nikel, P.I. 2020. Pseudomonas putida. Trends Microbiol. 28, 512–513.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Fang, Y., Zhi, S., Simpson, D.J., Gill, A., McMullen, L.M., Neumann, N.F., and Gänzle, M.G. 2020. The locus of heat resistance confers resistance to chlorine and other oxidizing chemicals in Escherichia coli. Appl. Environ. Microbiol. 86, e02123–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woo, H.J., Jiang, J., Lafer, E.M., and Sousa, R. 2009. ATP-induced conformational changes in Hsp70: molecular dynamics and experimental validation of an in silico predicted conformation. Biochemistry 48, 11470–11477.

    Article  CAS  PubMed  Google Scholar 

  • Wu, K., Minshull, T.C., Radford, S.E., Calabrese, A.N., and Bardwell, J.C. 2022. Trigger factor both holds and folds its client proteins. Nat. Commun. 13, 4126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, Y., Nie, L., Chen, H., He, M., Liang, Q., Nie, H., Chen, W., and Huang, Q. 2021. The two-component system TarR-TarS is regulated by c-di-GMP/FleQ and FliA and modulates antibiotic susceptibility in Pseudomonas putida. Environ. Microbiol. 23, 5239–5257.

    Article  CAS  PubMed  Google Scholar 

  • Xin, X.F., Kvitko, B., and He, S.Y. 2018. Pseudomonas syringae: what it takes to be a pathogen. Nat. Rev. Microbiol. 16, 316–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimune, K., Yoshimura, T., Nakayama, T., Nishino, T., and Esaki, N. 2002. Hsc62, Hsc56, and GrpE, the third Hsp70 chaperone system of Escherichia coli. Biochem. Biophys. Res. Commun. 293, 1389–1395.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Korea Polar Research Institute (KOPRI) grant funded by the Ministry of Oceans and Fisheries (KOPRI project No. PE22900). Changhan Lee received funding from the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (grant 2021R1C1-C1011690), the Basic Science Research Program through the NRF funded by the Ministry of Education (grant 2021R1A6-A1A10044950), and the new faculty research fund from Ajou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhan Lee.

Additional information

Conflict of Interest

The authors have no conflict of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Moon, S., Ham, S. et al. Cytoplasmic molecular chaperones in Pseudomonas species. J Microbiol. 60, 1049–1060 (2022). https://doi.org/10.1007/s12275-022-2425-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-2425-0

Keywords

Navigation