Skip to main content
Log in

A mucin-responsive hybrid two-component system controls Bacteroides thetaiotaomicron colonization and gut homeostasis

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The mammalian intestinal tract contains trillions of bacteria. However, the genetic factors that allow gut symbiotic bacteria to occupy intestinal niches remain poorly understood. Here, we identified genetic determinants required for Bacteroides thetaiotaomicron colonization in the gut using transposon sequencing analysis. Transposon insertion in BT2391, which encodes a hybrid two-component system, increased the competitive fitness of B. thetaiotaomicron. The BT2391 mutant showed a growth advantage in a mucin-dependent manner and had an increased ability to adhere to mucus-producing cell lines. The increased competitive advantage of the BT2391 mutant was dependent on the BT2392-2395 locus containing susCD homologs. Deletion of BT2391 led to changes in the expression levels of B. thetaiotaomicron genes during gut colonization. However, colonization of the BT2391 mutant promoted DSS colitis in low-fiber diet-fed mice. These results indicate that BT2391 contributes to a sustainable symbiotic relationship by maintaining a balance between mucosal colonization and gut homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ares, M. 2012. Bacterial RNA isolation. Cold Spring Harb. Protoc. 2012, 1024–1027.

    Article  PubMed  Google Scholar 

  • Bacic, M.K. and Smith, C.J. 2008. Laboratory maintenance and cultivation of Bacteroides species. Curr. Protoc. Microbiol. 9, 13c.1.1–13c.1.21.

    Article  Google Scholar 

  • Bolger, A.M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coyne, M.J., Chatzidaki-Livanis, M., Paoletti, L.C., and Comstock, L.E. 2008. Role of glycan synthesis in colonization of the mammalian gut by the bacterial symbiont Bacteroides fragilis. Proc. Natl. Acad. Sci. USA 105, 13099–13104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coyte, K.Z. and Rakoff-Nahoum, S. 2019. Understanding competition and cooperation within the mammalian gut microbiome. Curr. Biol. 29, R538–R544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen, T.W., Schofield, W.B., Barry, N.A., Putnam, E.E., Rundell, E.A., Trent, M.S., Degnan, P.H., Booth, C.J., Yu, H., and Goodman, A.L. 2015. Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 347, 170–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings, J.H. and Macfarlane, G.T. 1991. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70, 443–459.

    Article  CAS  PubMed  Google Scholar 

  • Degnan, P.H., Barry, N.A., Mok, K.C., Taga, M.E., and Goodman, A.L. 2014. Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut. Cell Host Microbe 15, 47–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai, M.S., Seekatz, A.M., Koropatkin, N.M., Kamada, N., Hickey, C.A., Wolter, M., Pudlo, N.A., Kitamoto, S., Terrapon, N., Muller, A., et al. 2016. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson, G.P., Lee, S.M., and Mazmanian, S.K. 2016. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32.

    Article  CAS  PubMed  Google Scholar 

  • Faith, J.J., Guruge, J.L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A.L., Clemente, J.C., Knight, R., Heath, A.C., Leibel, R.L., et al. 2013. The long-term stability of the human gut microbiota. Science 341, 1237439.

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Bayona, L. and Comstock, L.E. 2018. Bacterial antagonism in host-associated microbial communities. Science 361, eaat2456.

    Article  PubMed  Google Scholar 

  • García-Bayona, L. and Comstock, L.E. 2019. Streamlined genetic manipulation of diverse bacteroides and parabacteroides isolates from the human gut microbiota. mBio 10, e01762–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glenwright, A.J., Pothula, K.R., Bhamidimarri, S.P., Chorev, D.S., Basle, A., Firbank, S.J., Zheng, H., Robinson, C.V., Winterhalter, M., Kleinekathofer, U., et al. 2017. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature 541, 407–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman, A.L., McNulty, N.P., Zhao, Y., Leip, D., Mitra, R.D., Lozupone, C.A., Knight, R., and Gordon, J.I. 2009. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, D.W., Sherman, B.T., and Lempicki, R.A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.

    Article  CAS  Google Scholar 

  • Johansson, M.E.V., Sjövall, H., and Hansson, G.C. 2013. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10, 352–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koropatkin, N.M., Martens, E.C., Gordon, J.I., and Smith, T.J. 2008. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16, 1105–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead, B. and Salzberg, S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S.M., Donaldson, G.P., Mikulski, Z., Boyajian, S., Ley, K., and Mazmanian, S.K. 2013. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, Y., Smyth, G.K., and Shi, W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930.

    Article  CAS  PubMed  Google Scholar 

  • Love, M.I., Huber, W., and Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch, J.B. and Sonnenburg, J.L. 2012. Prioritization of a plant polysaccharide over a mucus carbohydrate is enforced by a Bacteroides hybrid two-component system. Mol. Microbiol. 85, 478–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens, E.C., Chiang, H.C., and Gordon, J.I. 2008. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens, E.C., Koropatkin, N.M., Smith, T.J., and Gordon, J.I. 2009. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens, E.C., Lowe, E.C., Chiang, H., Pudlo, N.A., Wu, M., McNulty, N.P., Abbott, D.W., Henrissat, B., Gilbert, H.J., Bolam, D.N., et al. 2011. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson, D.A., McNulty, N.P., Guruge, J.L., and Gordon, J.I. 2007. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339.

    Article  CAS  PubMed  Google Scholar 

  • Porter, N.T., Canales, P., Peterson, D.A., and Martens, E.C. 2017. A subset of polysaccharide capsules in the human symbiont Bacteroides thetaiotaomicron promote increased competitive fitness in the mouse gut. Cell Host Microbe 22, 494–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavan, V. and Groisman, E.A. 2010. Orphan and hybrid two-component system proteins in health and disease. Curr. Opin. Microbiol. 13, 226–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajilić-Stojanović, M., Heilig, H.G., Tims, S., Zoetendal, E.G., and de Vos, W.M. 2013. Long-term monitoring of the human intestinal microbiota composition. Environ. Microbiol. 15, 1146–1159.

    Article  Google Scholar 

  • Ravcheev, D.A., Godzik, A., Osterman, A.L., and Rodionov, D.A. 2013. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks. BMC Genomics 14, 873.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salyers, A.A., Vercellotti, J.R., West, S.E., and Wilkins, T.D. 1977. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol. 33, 319–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrao, E., Cherepanov, P., and Engelman, A.N. 2016. Amplification, next-generation sequencing, and genomic dna mapping of retroviral integration sites. J. Vis. Exp. 109, e53840.

    Google Scholar 

  • Singh, R.K., Chang, H.W., Yan, D., Lee, K.M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T.H., et al. 2017. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15, 73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonnenburg, J.L., Angenent, L.T., and Gordon, J.I. 2004. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat. Immunol. 5, 569–573.

    Article  CAS  PubMed  Google Scholar 

  • Sonnenburg, E.D., Sonnenburg, J.L., Manchester, J.K., Hansen, E.E., Chiang, H.C., and Gordon, J.I. 2006. A hybrid two-component system protein of a prominent human gut symbiont couples glycan sensing in vivo to carbohydrate metabolism. Proc. Natl. Acad. Sci. USA 103, 8834–8839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnenburg, J.L., Xu, J., Leip, D.D., Chen, C.H., Westover, B.P., Weatherford, J., Buhler, J.D., and Gordon, J.I. 2005. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959.

    Article  CAS  PubMed  Google Scholar 

  • Van der Sluis, M., De Koning, B.A.E., De Bruijn, A.C.J.M., Velcich, A., Meijerink, J.P.P., Van Goudoever, J.B., Büller, H.A., Dekker, J., Van Seuningen, I., Renes, I.B., et al. 2006. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129.

    Article  CAS  PubMed  Google Scholar 

  • Wexler, A.G., Schofield, W.B., Degnan, P.H., Folta-Stogniew, E., Barry, N.A., and Goodman, A.L. 2018. Human gut Bacteroides capture vitamin B12 via cell surface-exposed lipoproteins. Elife 7, e37138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, M., McNulty, N.P., Rodionov, D.A., Khoroshkin, M.S., Griffin, N.W., Cheng, J., Latreille, P., Kerstetter, R.A., Terrapon, N., Henrissat, B., et al. 2015. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science 350, aac5992.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, J., Bjursell, M.K., Himrod, J., Deng, S., Carmichael, L.K., Chiang, H.C., Hooper, L.V., and Gordon, J.I. 2003. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, D., Liwinski, T., and Elinav, E. 2020. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y., Suits, M.D.L., Thompson, A.J., Chavan, S., Dinev, Z., Dumon, C., Smith, N., Moremen, K.W., Xiang, Y., Siriwardena, A., et al. 2010. Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. Nat. Chem. Biol. 6, 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, W., Winter, M.G., Spiga, L., Hughes, E.R., Chanin, R., Mulgaonkar, A., Pennington, J., Maas, M., Behrendt, C.L., Kim, J., et al. 2020. Xenosiderophore utilization promotes Bacteroides thetaiotaomicron resilience during colitis. Cell Host Microbe 27, 376–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fellowship of Suh Kyungbae Foundation to JHP, the POSCO Science Fellowship of POSCO TJ Park Foundation to JHP; and by a grant (2020R1I1A1A-01052942) of the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Republic of Korea, to YJC. SJK, JYH, and SHC were recipients of the BK21 Fellowship from the Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

JHP initiated the project. JHL, SJK, JYH, and SHC performed the experiments. YJC helped interpret the experimental results. JHL, YJC, and JHP wrote the manuscript.

Corresponding author

Correspondence to Joo-Hong Park.

Ethics declarations

Conflict of Interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethcial Statements All animal experiments were performed as approved by the Institutional Animal Care and Use Committee (IACUC) of Seoul National University (approval number: SNU-200504-6-6).

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JH., Kwon, SJ., Han, JY. et al. A mucin-responsive hybrid two-component system controls Bacteroides thetaiotaomicron colonization and gut homeostasis. J Microbiol. 60, 215–223 (2022). https://doi.org/10.1007/s12275-022-1649-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-1649-3

Keywords

Navigation