Skip to main content
Log in

Molecular characterization of the Saccharomycopsis fibuligera ATF genes, encoding alcohol acetyltransferase for volatile acetate ester formation

  • Systems and Synthetic Microbiology and Bioinformatics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Aroma ester components produced by fermenting yeast cells via alcohol acetyltransferase (AATase)-catalyzed intracellular reactions are responsible for the fruity character of fermented alcoholic beverages, such as beer and wine. Acetate esters are reportedly produced at relatively high concentrations by non-Saccharomyces species. Here, we identified 12 ATF orthologues (SfATFs) encoding putative AATases, in the diploid genome of Saccharomycopsis fibuligera KJJ81, an isolate from wheat-based Nuruk in Korea. The identified SfATF proteins (SfAtfp) display low sequence identities with S. cerevisiae Atf1p (between 13.3 and 27.0%). All SfAtfp identified, except SfAtf(A)4p and SfAtf(B)4p, contained the activation domain (HXXXD) conserved in other Atf proteins. Culture supernatant analysis using headspace gas chromatography mass spectrometry confirmed that the recombinant S. cerevisiae strains expressing SfAtf(A)2p, SfAtf(B)2p, and SfAtf(B)6p produced high levels of isoamyl and phenethyl acetates. The volatile aroma profiles generated by the SfAtf proteins were distinctive from that of S. cerevisiae Atf1p, implying difference in the substrate preference. Cellular localization analysis using GFP fusion revealed the localization of SfAtf proteins proximal to the lipid particles, consistent with the presence of amphipathic helices at their N- and C-termini. This is the first report that systematically characterizes the S. fibuligera ATF genes encoding functional AATases responsible for acetate ester formation using higher alcohols as substrate, demonstrating their biotechnological potential for volatile ester production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aslankoohi, E., Herrera-Malaver, B., Rezaei, M.N., Steensels, J., Courtin, C.M., and Verstrepen, K.J. 2016. Non-conventional yeast strains increase the aroma complexity of bread. PLoS ONE 11, e0165126.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chi, Z., Chi, Z., Liu, G., Wang, F., Ju, L., and Zhang, T. 2009. Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol. Adv. 27, 423–431.

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y.R., Kim, H.J., Lee, J.Y., Kang, H.A., and Kim, H.J. 2013. Chromatographically-purified capsid proteins of red-spotted grouper nervous necrosis virus expressed in Saccharomyces cerevisiae form virus-like particles. Protein Expr. Purif. 89, 162–168.

    Article  CAS  PubMed  Google Scholar 

  • Choo, J.H., Hong, C.P., Lim, J.Y., Seo, J.A., Kim, Y.S., Lee, D.W., Park, S.G., Lee, G.W., Carroll, E., Lee, Y.W., et al. 2016. Whole-genome de novo sequencing, combined with RNA-Seq analysis, reveals unique genome and physiological features of the amylolytic yeast Saccharomycopsis fibuligera and its interspecies hybrid. Biotechnol. Biofuels 9, 246.

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Auria, J.C. 2006. Acyltransferases in plants: a good time to be BAHD. Curr. Opin. Plant Biol. 9, 331–340.

    Article  PubMed  Google Scholar 

  • Fujii, T., Nagasawa, N., Iwamatsu, A., Bogaki, T., Tamai, Y., and Hamachi, M. 1994. Molecular cloning, sequence analysis, and expression of the yeast alcohol acetyltransferase gene. Appl. Environ. Microbiol. 60, 2786–2792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galaz, S., Morales-Quintana, L., Moya-León, M.A., and Herrera, R. 2013. Structural analysis of the alcohol acyltransferase protein family from Cucumis melo shows that enzyme activity depends on an essential solvent channel. FEBS J. 280, 1344–1357.

    Article  CAS  PubMed  Google Scholar 

  • Gamero, A., Quintilla, R., Groenewald, M., Alkema, W., Boekhout, T., and Hazelwood, L. 2016. High-throughput screening of a large collection of non-conventional yeasts reveals their potential for aroma formation in food fermentation. Food Microbiol. 60, 147–159.

    Article  CAS  PubMed  Google Scholar 

  • Gautier, R., Douguet, D., Antonny, B., and Drin, G. 2008. HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics 24, 2101–2102.

    Article  CAS  PubMed  Google Scholar 

  • Gietz, R.D. and Schiestl, R.H. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34.

    Article  CAS  PubMed  Google Scholar 

  • Goulet, C., Kamiyoshihara, Y., Lam, N.B., Richard, T., Taylor, M.G., Tieman, D.M., and Klee, H.J. 2015. Divergence in the enzymatic activities of a tomato and Solanum pennellii alcohol acyltransferase impacts fruit volatile ester composition. Mol. Plant 8, 153–162.

    Article  CAS  PubMed  Google Scholar 

  • Hazelwood, L.A., Daran, J.M., van Maris, A.J.A., Pronk, J.T., and Dickinson, J.R. 2008. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 74, 2259–2266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, K., Jin, G.J., Mei, W.C., Li, T., and Tao, Y.S. 2018. Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chem. 239, 495–501.

    Article  CAS  PubMed  Google Scholar 

  • Jefferys, B.R., Kelley, L.A., and Sternberg, M.J.E. 2010. Protein folding requires crowd control in a simulated cell. J. Mol. Biol. 397, 1329–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J.E. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruis, A.J., Levisson, M., Mars, A.E., van der Ploeg, M., Garcés Daza, F., Ellena, V., Kengen, S.W.M., van der Oost, J., and Weusthuis, R.A. 2017. Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. Metab. Eng. 41, 92–101.

    Article  CAS  PubMed  Google Scholar 

  • Lamiable, A., Thévenet, P., Rey, J., Vavrusa, M., Derreumaux, P., and Tufféry, P. 2016. PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 44, W449–W454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S.M., Jung, J.H., Seo, J.A., and Kim, Y.S. 2018. Bioformation of volatile and nonvolatile metabolites by Saccharomycopsis fibuligera KJJ81 cultivated under different conditions-carbon sources and cultivation times. Molecules 23, 2762.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lilly, M., Bauer, F.F., Lambrechts, M.G., Swiegers, J.H., Cozzolino, D., and Pretorius, I.S. 2006. The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast 23, 641–659.

    Article  CAS  PubMed  Google Scholar 

  • Lilly, M., Lambrechts, M.G., and Pretorius, I.S. 2000. Effect of increased yeast alcohol acetyltransferase activity on flavour profiles of wine and distillates. Appl. Environ. Microbiol. 66, 744–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, J.L. and Wheeldon, I. 2014. Dual N- and C-terminal helices are required for endoplasmic reticulum and lipid droplet association of alcohol acetyltransferases in Saccharomyces cerevisiae. PLoS ONE 9, e104141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Momoi, M., Tanoue, D., Sun, Y., Takematsu, H., Suzuki, Y., Suzuki, M., Suzuki, A., Fujita, T., and Kozutsumi, Y. 2004. SLI1 (YGR212W) is a major gene conferring resistance to the sphingolipid biosynthesis inhibitor ISP-1, and encodes an ISP-1 N-acetyltransferase in yeast. Biochem. J. 381, 321–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagasawa, N., Bogaki, T., Iwamatsu, A., Hamachi, M., and Kumagai, C. 1998. Cloning and nucleotide sequence of the alcohol acetyltransferase II gene (ATF2) from Saccharomyces cerevisiae Kyokai No. 7. Biosci. Biotechnol. Biochem. 62, 1852–1857.

    Article  CAS  PubMed  Google Scholar 

  • Nancolas, B., Bull, I.D., Stenner, R., Dufour, V., and Curnow, P. 2017. Saccharomyces cerevisiae Atf1p is an alcohol acetyltransferase and a thioesterase in vitro. Yeast 34, 239–251.

    Article  CAS  PubMed  Google Scholar 

  • Nyanga, L.K., Nout, M.J., Smid, E.J., Boekhout, T., and Zwietering, M.H. 2013. Fermentation characteristics of yeasts isolated from traditionally fermented masau (Ziziphus mauritiana) fruits. Int. J. Food Microbiol. 166, 426–432.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, G.M., Tashiro, Y., and Atsumi, S. 2014. Expanding ester biosynthesis in Escherichia coli. Nat. Chem. Biol. 10, 259–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saerens, S.M.G., Delvaux, F.R., Verstrepen, K.J., and Thevelein, J.M. 2010. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb. Biotechnol. 3, 165–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saerens, S.M.G., Verstrepen, K.J., Van Laere, S.D.M., Voet, A.R.D., Van Dijck, P., Delvaux, F.R., and Thevelein, J.M. 2006. The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J. Biol. Chem. 281, 4446–4456.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, J., Rupp, O., Trost, E., Jaenicke, S., Passoth, V., Goesmann, A., Tauch, A., and Brinkrolf, K. 2012. Genome sequence of Wickerhamomyces anomalus DSM 6766 reveals genetic basis of biotechnologically important antimicrobial activities. FEMS Yeast Res. 12, 382–386.

    Article  CAS  PubMed  Google Scholar 

  • Söding, J. 2005. Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960.

    Article  PubMed  Google Scholar 

  • Sohn, M.J., Oh, D.B., Kim, E.J., Cheon, S.A., Kwon, O., Kim, J.Y., Lee, S.Y., and Kang, H.A. 2012. HpYPS1 and HpYPS7 encode functional aspartyl proteases localized at the cell surface in the thermotolerant methylotrophic yeast Hansenula polymorpha. Yeast 29, 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Son, E.Y., Lee, S.M., Kim, M., Seo, J.A., and Kim, Y.S. 2018. Comparison of volatile and non-volatile metabolites in rice wine fermented by Koji inoculated with Saccharomycopsis fibuligera and Aspergillus oryzae. Food Res. Int. 109, 596–605.

    Article  CAS  PubMed  Google Scholar 

  • Stribny, J., Querol, A., and Perez-Torrado, R. 2016. Differences in enzymatic properties of the Saccharomyces kudriavzevii and Saccharomyces uvarum alcohol acetyltransferases and their impact on aroma-active compounds production. Front. Microbiol. 7, 897.

    Article  PubMed  PubMed Central  Google Scholar 

  • Su, C., Zhang, K.Z., Cao, X.Z., and Yang, J.G. 2020. Effects of Saccharomycopsis fibuligera and Saccharomyces cerevisiae inoculation on small fermentation starters in Sichuan-style Xiaoqu liquor. Food Res. Int. 137, 109425.

    Article  CAS  PubMed  Google Scholar 

  • Tashiro, Y., Desai, S.H., and Atsumi, S. 2015a. Two-dimensional isobutyl acetate production pathways to improve carbon yield. Nat. Commun. 6, 7488.

    Article  CAS  PubMed  Google Scholar 

  • Tashiro, Y., Rodriguez, G.M., and Atsumi, S. 2015b. 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals. J. Ind. Microbiol. Biotechnol. 42, 361–373.

    Article  CAS  PubMed  Google Scholar 

  • ter Veld, F., Wolff, D., Schorsch, C., Kohler, T., Boles, E., and Poetsch, A. 2013. Production of tetraacetyl phytosphingosine (TAPS) in Wickerhamomyces ciferrii is catalyzed by acetyltransferases Sli1p and Atf2p. Appl. Microbiol. Biotechnol. 97, 8537–8546.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, R., Koffel, R., and Schneiter, R. 2007. An acetylation/deacetylation cycle controls the export of sterols and steroids from S. cerevisiae. EMBO J. 26, 5109–5119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Laere, S.D.M., Saerens, S.M.G., Verstrepen, K.J., Van Dijck, P., Thevelein, J.M., and Delvaux, F.R. 2008. Flavour formation in fungi: characterisation of KlAtf, the Kluyveromyces lactis orthologue of the Saccharomyces cerevisiae alcohol acetyltransferases Atf1 and Atf2. Appl. Microbiol. Biotechnol. 78, 783–792.

    Article  CAS  PubMed  Google Scholar 

  • van Rijswijck, I.M.H., Wolkers-Rooijackers, J.C.M., Abee, T., and Smid, E.J. 2017. Performance of non-conventional yeasts in coculture with brewers’ yeast for steering ethanol and aroma production. Microb. Biotechnol. 10, 1591–1602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varela, C. 2016. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 100, 9861–9874.

    Article  CAS  PubMed  Google Scholar 

  • Verstrepen, K.J., Van Laere, S.D.M., Vanderhaegen, B.M.P., Derdelinckx, G., Dufour, J.P., Pretorius, I.S., Winderickx, J., Thevelein, J.M., and Delvaux, F.R. 2003. Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl. Environ. Microbiol. 69, 5228–5237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstrepen, K.J., Van Laere, S.D.M., Vercammen, J., Derdelinckx, G., Dufour, J.P., Pretorius, I.S., Winderickx, J., Thevelein, J.M., and Delvaux, F.R. 2004. The Saccharomyces cerevisiae alcohol acetyl transferase Atf1p is localized in lipid particles. Yeast 21, 367–377.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto, H., Fujiwara, D., Momma, T., Ito, C., Sone, H., Kaneko, Y., and Tamai, Y. 1998. Characterization of the ATF1 and Lg-ATF1 genes encoding alcohol acetyltransferases in the bottom fermenting yeast Saccharomyces pastorianus. J. Ferment. Bioeng. 86, 15–20.

    Article  CAS  Google Scholar 

  • Yoshimoto, H., Fujiwara, D., Momma, T., Tanaka, K., Sone, H., Nagasawa, N., and Tamai, Y. 1999. Isolation and characterization of the ATF2 gene encoding alcohol acetyltransferase II in the bottom fermenting yeast Saccharomyces pastorianus. Yeast 15, 409–417.

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka, K. and Hashimoto, N. 1981. Ester formation by alcohol acetyltransferase from brewer’s yeast. Agri. Biol. Chem. 45, 2183–2190.

    CAS  Google Scholar 

  • Zhu, J., Lin, J.L., Palomec, L., and Wheeldon, I. 2015. Microbial host selection affects intracellular localization and activity of alcohol-O-acetyltransferases. Microb. Cell Fact. 14, 35.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korean Ministry of Agriculture, Food, and Rural Affairs, Grant No. 918010042HD030 (Strategic Initiative for Microbiomes in Agriculture and Food). This research was supported by the Chung-Ang University Research Scholarship Grants in 2020 (to K.S. Kim). We are grateful to Prof. Ian Wheeldon (University of California Riverside) for providing the pERGmDsRed plasmid and to Azin Rashed for her technical assistance with vector construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ah Kang.

Ethics declarations

The authors declare that there are no conflicts of interest.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, H.Y., Kim, H.J., Kim, K.S. et al. Molecular characterization of the Saccharomycopsis fibuligera ATF genes, encoding alcohol acetyltransferase for volatile acetate ester formation. J Microbiol. 59, 598–608 (2021). https://doi.org/10.1007/s12275-021-1159-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-1159-8

Keywords

Navigation