Skip to main content
Log in

Ciceribacter ferrooxidans sp. nov., a nitrate-reducing Fe(II)-oxidizing bacterium isolated from ferrous ion-rich sediment

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A nitrate-reducing Fe(II)-oxidizing bacterial strain, F8825T, was isolated from the Fe(II)-rich sediment of an urban creek in Pearl River Delta, China. The strain was Gram-negative, facultative chemolithotrophic, facultative anaerobic, non-spore-forming, and rod-shaped with a single flagellum. Phy-logenetic analysis based on 16S rRNA gene sequencing indicated that it belongs to the genus Ciceribacter and is most closely related to C. lividus MSSRFBL1T (99.4%), followed by C. thiooxidans F43bT (98.8%) and C. azotifigens A.slu09T (98.0%). Fatty acid, polar lipid, respiratory quinone, and DNA G + C content analyses supported its classification in the genus Ciceribacter. Multilocus sequence analysis of concatenated 16S rRNA, atpD, glnII, gyrB, recA, and thrC suggested that the isolate was a novel species. DNA-DNA hybridization and genome sequence comparisons (90.88 and 89.86%, for values of ANIm and ANIb between strains F8825T with MSSRFBL1T, respectively) confirmed that strain F8825T was a novel species, different from C. lividus MSSRFBL1T, C. thiooxidans F43bT, and C. azotifigens A.slu09T. The physiological and biochemical properties of the strain, such as carbon source utilization, nitrate reduction, and ferrous ion oxidation, further supported that this is a novel species. Based on the polyphasic taxonomic results, strain F8825T was identified as a novel species in the genus Ciceribacter, for which the name Ciceribacter ferrooxidans sp. nov. is proposed. The type strain is F8825T (= CCTCC AB 2018196T = KCTC 62948T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol.19, 455–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri, S.K., Lack, J.G., and Coates, J.D. 2001. Biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl. Environ. Microbiol.67, 2844–2848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D.R., da Costa, M.S., Rooney, A.P., Yi, H., Xu, X.W., De Meyer, S., et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol.68, 461–466.

    Article  CAS  PubMed  Google Scholar 

  • Cole, J.J., Prairie, Y.T., Caraco, N.F., Mcdowell, W.H., Tranvik, L.J., Striegl, R.G., Duarte, C.M., Kortelainen, P., Downing, J.A., Mid-delburg, J.J., et al. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems10, 172–185.

    Article  Google Scholar 

  • Deng, T., Chen, X., Zhang, Q., Zhong, Y., Guo, J., Sun, G., and Xu, M. 2017. Ciceribacter thiooxidans sp. nov. a novel nitrate-reducing thiosulfate-oxidizing bacterium isolated from sulfide-rich anoxic sediment. Int. J. Syst. Evol. Microbiol.67, 4710–4715.

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt, P., Murray, R.G.E., Costilow, R.N., Nester, E.W., Wood, W.A., Krieg, N.R., and Phillips, G.B. 1981. Manual of methods for general bacteriology. American Society Microbiology, Washington, D.C., USA.

    Google Scholar 

  • Huerta-Cepas, J., Forslund, K., Coelho, L.P., Szklarczyk, D., Jensen, L.J., von Mering, C., and Bork, P. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol.34, 2115–2122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyatt, D., Chen, G.L., Locascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics11, 119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanehisa, M., Sato, Y., and Morishima, K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol.428, 726–731.

    Article  CAS  PubMed  Google Scholar 

  • Kathiravan, R., Jegan, S., Ganga, V., Prabavathy, V.R., Tushar, L., Sasikala, Ch., and Ramana, Ch.V. 2013. Ciceribacter lividus gen. nov. sp. nov. isolated from rhizosphere soil of chick pea (Cicerarietinum L.). Int. J. Syst. Evol. Microbiol.63, 4484–4488.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, M., Verma, M., and Lal, R. 2008. Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int. J. Syst. Evol. Microbiol.58, 861–865.

    Article  CAS  PubMed  Google Scholar 

  • Lack, J.G., Chaudhuri, S.K., Kelly, S.D., Kemner, K.M., O’Connor, S.M., and Coates, J.D. 2002. Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II). Appl. Environ. Microbiol.68, 2704–2710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, L.Y., Chen, W.F., Han, L.L., Wang, E.T., and Chen, W.X. 2009. Rhizobium alkalisoli sp. nov. isolated from Caragana intermedia growing in saline-alkaline soils in the north of China. Int. J. Syst. Evol. Microbiol.59, 3006–3011.

    Article  CAS  Google Scholar 

  • Martens, M., Delaere, M., Coopman, R., De Vos, P., Gillis, M., and Willems, A. 2007. Multilocus sequence analysis of Ensifer and related taxa. Int. J. Syst. Evol. Microbiol.57, 489–503.

    Article  CAS  PubMed  Google Scholar 

  • Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods2, 233–241.

    Article  CAS  Google Scholar 

  • Moore, D.D. and Dowhan, D. 2012. Preparation and analysis of DNA. Curr. Protoc. Mol. Biol.98, 2.0.1–2.0.3.

    Article  Google Scholar 

  • Nguyen, T.M. and Kim, J. 2017. A rapid and simple method for identifying bacterial polar lipid components in wet biomass. J. Microbiol.55, 635–639.

    Article  PubMed  Google Scholar 

  • Nishijima, M., Araki-Sakai, M., and Sano, H. 1997. Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. J. Microbiol. Methods28, 113–122.

    Article  CAS  Google Scholar 

  • Richter, M. and Rosselló-Móra, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA106, 19126–19131.

    Article  CAS  PubMed  Google Scholar 

  • Richter, M., Rosselló-Móra, R., Oliver Glöckner, F., and Peplies, J. 2016. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics32, 929–931.

    Article  CAS  PubMed  Google Scholar 

  • Schaedler, F., Lockwood, C., Lueder, U., Glombitza, C., Kappler, A., and Schmidt, C. 2018. Microbially mediated coupling of Fe and N cycles by nitrate-reducing Fe(II)-oxidizing bacteria in littoral freshwater sediments. Appl. Environ. Microbiol.84, e02013–17.

    PubMed  PubMed Central  Google Scholar 

  • Schippers, A. and Jørgensen, B.B. 2002. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochim. Cosmochim. Acta66, 85–92.

    Article  CAS  Google Scholar 

  • Senn, D.B. and Hemond, H.F. 2002. Nitrate controls on iron and arsenic in an urban lake. Science296, 2373–2376.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi, M.Z., Choi, G.M., and Im, W.T. 2018. Ciceribacter azotifigens sp. nov. a nitrogen-fixing bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol.68, 482–486.

    Article  CAS  PubMed  Google Scholar 

  • Sinsabaugh, R.L., Hill, B.H., and Follstad Shah, J.J. 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature462, 795–798.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y., Yang, R., Guo, Z., Zhang, M., Wang, X., and Zhou, F. 2000. Distinctness of spore and vegetative cellular fatty acid profiles of some aerobic endospore-forming bacilli. J. Microbiol. Methods39, 225–241.

    Article  CAS  PubMed  Google Scholar 

  • Straub, K.L., Benz, M., Schink, B., and Widdel, F. 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol.62, 1458–1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaclavkova, S., Jørgensen, C.J., Jacobsen, O.S., Aamand, J., and Elberling, B. 2014. The importance of microbial iron sulfide oxidation for nitrate depletion in anoxic Danish sediments. Aquat. Geochem.20, 419–435.

    Article  CAS  Google Scholar 

  • Vinuesa, P., Silva, C., Werner, D., and Martinez-Romero, E. 2005. Population genetics and phylogenetic inference in bacterial molecular systematics: The roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol. Phylogenet. Evol.34, 29–54.

    Article  CAS  PubMed  Google Scholar 

  • Weber, K.A., Achenbach, L.A., and Coates, J.D. 2006a. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol.4, 752–764.

    Article  CAS  PubMed  Google Scholar 

  • Weber, K.A., Urrutia, M.M., Churchill, P.F., Kukkadapu, R.K., and Roden, E.E. 2006b. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environ. Microbiol.8, 100–113.

    Article  CAS  PubMed  Google Scholar 

  • Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., and Schink, B. 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature362, 834–836.

    Article  CAS  Google Scholar 

  • Xu, M., Zhang, Q., Xia, C., Zhong, Y., Sun, G., Guo, J., Yuan, T., Zhou, J., and He, Z. 2014. Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME J.8, 1932–1944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yassin, A.F., Galinski, E.A., Wohlfarth, A., Jahnke, K.D., Schaal, K.P., and Trüper, H.G. 1993. A new actinomycete species, Nocardiopsis lucentensis sp. nov. Int. J. Syst. Bacteriol.43, 266–271.

    Article  Google Scholar 

  • Zhang, M., Zheng, P., Wang, R., Li, W., Lu, H., and Zhang, J. 2014. Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: a perspective autotrophic nitrogen pollution control technology. Chemosphere117, 604–609.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Korean Agricultural Culture Collection (KACC) for providing free strain C. azotifigens A.slu09T. This work was funded by the National Key R & D Program of China (2018YFD0500202), the National Natural Science Foundation of China (91851202, 51678163, 21677042), GDAS’ Special Project of Science and Technology Development (2019-GDASYL-0104005), Natural Science Foundation of Guangdong Province (2018B0303110010), Science and Technology Project of Guangzhou (201707020021), Guangdong Technological Innovation Strategy of Special Funds (Key Areas of Research and Development Program, 2018B020205003) and Guangdong MEPP Fund (GDOE2019A34).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiying Xu.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, T., Qian, Y., Chen, X. et al. Ciceribacter ferrooxidans sp. nov., a nitrate-reducing Fe(II)-oxidizing bacterium isolated from ferrous ion-rich sediment. J Microbiol. 58, 350–356 (2020). https://doi.org/10.1007/s12275-020-9471-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9471-2

Keywords

Navigation