Skip to main content
Log in

Gastrointestinal microbiota alteration induced by Mucor circinelloides in a murine model

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mucor circinelloides is a pathogenic fungus and etiologic agent of mucormycosis. In 2013, cases of gastrointestinal illness after yogurt consumption were reported to the US FDA, and the producer found that its products were contaminated with Mucor. A previous study found that the Mucor strain isolated from an open contaminated yogurt exhibited virulence in a murine systemic infection model and showed that this strain is capable of surviving passage through the gastrointestinal tract of mice. In this study, we isolated another Mucor strain from an unopened yogurt that is closely related but distinct from the first Mucor strain and subsequently examined if Mucor alters the gut microbiota in a murine host model. DNA extracted from a ten-day course of stool samples was used to analyze the microbiota in the gastrointestinal tracts of mice exposed via ingestion of Mucor spores. The bacterial 16S rRNA gene and fungal ITS1 sequences obtained were used to identify taxa of each kingdom. Linear regressions revealed that there are changes in bacterial and fungal abundance in the gastrointestinal tracts of mice which ingested Mucor. Furthermore, we found an increased abundance of the bacterial genus Bacteroides and a decreased abundance of the bacteria Akkermansia muciniphila in the gastrointestinal tracts of exposed mice. Measurements of abundances show shifts in relative levels of multiple bacterial and fungal taxa between mouse groups. These findings suggest that exposure of the gastrointestinal tract to Mucor can alter the microbiota and, more importantly, illustrate an interaction between the intestinal mycobiota and bacteriota. In addition, Mucor was able to induce increased permeability in epithelial cell monolayers in vitro, which might be indicative of unstable intestinal barriers. Understanding how the gut microbiota is shaped is important to understand the basis of potential methods of treatment for gastrointestinal illness. How the gut microbiota changes in response to exposure, even by pathogens not considered to be causative agents of food-borne illness, may be important to how commercial food producers prevent and respond to contamination of products aimed at the public. This study provides evidence that the fungal microbiota, though understudied, may play an important role in diseases of the human gut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboltins, C.A., William, A.B.P., and Solano, T.R. 2006. Fungemia secondary to gastrointestinal Mucor indicus infection. Clin. Infect. Dis. 42, 154–155.

    Article  PubMed  Google Scholar 

  • Alston, T.A., Mela, L., and Bright, H.J. 1977. 3–Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc. Natl. Acad. Sci. USA 74, 3767–3771.

    CAS  PubMed  Google Scholar 

  • Bamias, G., Okazawa, A., Rivera–Nieves, J., Arseneau, K.O., De La Rue, S.A., Pizarro, T.T., and Cominelli, F. 2007. Commensal bacteria exacerbate intestinal inflammation but are not essential for the development of murine ileitis. J. Immunol. 178, 1809–1818.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300.

    Google Scholar 

  • Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight, R., Mills, D.A., and Caporaso, J.G. 2013. Quality–filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–U11.

    Article  CAS  PubMed  Google Scholar 

  • Botschuijver, S., Roeselers, G., Levin, E., Jonkers, D.M., Welting, O., Heinsbroek, S.E.M., de Weerd, H.H., Boekhout, T., Fornai, M., Masclee, A.A., et al. 2017. Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology 153, 1026–1039.

    Article  PubMed  Google Scholar 

  • Bray, J.R. and Curtis, J.T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monograph. 27, 326–349.

    Article  Google Scholar 

  • Brouillet, E., Jacquard, C., Bizat, N., and Blum, D. 2005. 3Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J. Neurochem. 95, 1521–1540.

    CAS  Google Scholar 

  • Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg–Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L., Bauer, M., et al. 2012. Ultra–high–throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao, A. 1984. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270.

    Google Scholar 

  • Chayakulkeeree, M., Ghannoum, M.A., and Perfect, J.R. 2006. Zygomycosis: the re–emerging fungal infection. Eur. J. Clin. Microbiol. Infect. Dis. 25, 215–229.

    Article  CAS  PubMed  Google Scholar 

  • Chiaro, T.R., Soto, R., Zac Stephens, W., Kubinak, J.L., Petersen, C., Gogokhia, L., Bell, R., Delgado, J.C., Cox, J., Voth, W., et al. 2017. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Sci. Transl. Med. 9, 9044.

    Article  CAS  Google Scholar 

  • Chichlowski, M. and Rudolph, C. 2015. Visceral pain and gastrointestinal microbiome. J. Neurogastroenterol. Motil. 21, 172–181.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook, R.D. 1977. Detection of influential observation in linear regression. Technometrics 19, 15–18.

    Google Scholar 

  • Devaraj, S., Hemarajata, P., and Versalovic, J. 2013. The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin. Chem. 59, 617–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Erdogan, A. and Rao, S.S.C. 2015. Small intestinal fungal overgrowth. Curr. Gastroenterol. Rep. 17, 16.

    Article  PubMed  Google Scholar 

  • Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J.P., Art, C., Bindels, L.B., Guiot, Y., Derrien, M.M.N., Muccioli, G.G., Delzenne, N.M., et al. 2013. Crosstalk between Akkermansia muciniphila and intestinal epithelium controls diet–induced obesity. Proc. Natl. Acad. Sci. USA 110, 9066–9071.

    Article  PubMed  PubMed Central  Google Scholar 

  • FDA. 2013. Chobani, Inc. voluntarily recalls greek yogurt because of product concerns.

    Google Scholar 

  • Findley, K., Oh, J., Yang, J., Conlan, S., Deming, C., Meyer, J.A., Schoenfeld, D., Nomicos, E., Park, M., Program, N.C.S., et al. 2013. Human skin fungal diversity. Nature 498, 367–370.

    CAS  PubMed  Google Scholar 

  • Gweon, H.S., Oliver, A., Taylor, J., Booth, T., Gibbs, M., Read, D.S., Griffiths, R.I., Schonrogge, K., and Bunce, M. 2015. PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 6, 973–980.

    Article  PubMed  PubMed Central  Google Scholar 

  • He, F., Zhang, S., Qian, F., and Zhang, C. 1995. Delayed dystonia with striatal CT lucencies induced by a mycotoxin (3–nitropropionic acid). Neurology 45, 2178–2183.

    Article  CAS  PubMed  Google Scholar 

  • Hoarau, G., Mukherjee, P.K., Gower–Rousseau, C., Hager, C., Chandra, J., Retuerto, M.A., Neut, C., Vermeire, S., Clemente, J., Colombel, J.F., et al. 2016. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio 7, e01250–16.

    Google Scholar 

  • Hollmann, M., Razzazi–Fazeli, E., Grajewski, J., Twaruzek, M., Sulyok, M., and Böhm, J. 2008. Detection of 3–nitropropionic acid and cytotoxicity in Mucor circinelloides. Mycotoxin Res. 24, 140–150.

    Article  CAS  PubMed  Google Scholar 

  • Iliev, I.D., Funari, V.A., Taylor, K.D., Nguyen, Q., Reyes, C.N., Strom, S.P., Brown, J., Becker, C.A., Fleshner, P.R., Dubinsky, M., et al. 2012. Interactions between commensal fungi and the C–type lectin receptor Dectin–1 influence colitis. Science 336, 1314–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James, T.Y., Kauff, F., Schoch, C.L., Matheny, P.B., Hofstetter, V., Cox, C.J., Celio, G., Gueidan, C., Fraker, E., Miadlikowska, J., et al. 2006. Reconstructing the early evolution of fungi using a sixgene phylogeny. Nature 443, 818–822.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.J., Shajib, M.S., Manocha, M.M., and Khan, W.I. 2012. Investigating intestinal inflammation in DSS–induced model of IBD. J. Vis. Exp. 60, 3678.

    Google Scholar 

  • Kleiman, S.C., Bulik–Sullivan, E.C., Glenny, E.M., Zerwas, S.C., Huh, E.Y., Tsilimigras, M.C.B., Fodor, A.A., Bulik, C.M., and Carroll, I.M. 2017. The gut–brain axis in healthy females: lack of significant association between microbial composition and diversity with psychiatric measures. PLoS One 12, e0170208.

    Article  CAS  Google Scholar 

  • Kleiman, S.C., Watson, H.J., Bulik–Sullivan, E.C., Huh, E.Y., Tarantino, L.M., Bulik, C.M., and Carroll, I.M. 2015. The intestinal microbiota in acute anorexia nervosa and during renourishment: relationship to depression, anxiety, and eating disorder psychopathology. Psychosom. Med. 77, 969–981.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kõljalg, U., Larsson, K.H., Abarenkov, K., Nilsson, R.H., Alexander, I.J., Eberhardt, U., Erland, S., Høiland, K., Kjøller, R., Larsson, E., et al. 2005. UNITE: a database providing web–based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 166, 1063–1068.

    Article  CAS  PubMed  Google Scholar 

  • Kumamoto, C.A. 2011. Inflammation and gastrointestinal Candida colonization. Curr. Opin. Microbiol. 14, 386–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazar, S.P., Lukaszewicz, J.M., Persad, K.A., and Reinhardt, J.F. 2014. Rhinocerebral Mucor circinelloides infection in immunocompromised patient following yogurt ingestion. Del. Med. J. 86, 245.

    PubMed  Google Scholar 

  • Lee, S.C., Billmyre, R.B., Li, A., Carson, S., Sykes, S.M., Huh, E.Y., Mieczkowski, P., Ko, D.C., Cuomo, C.A., and Heitman, J. 2014. Analysis of a food–borne fungal pathogen outbreak: virulence and genome of a Mucor circinelloides isolate from yogurt. mBio 5, e01390–14.

    Google Scholar 

  • Leonardi, I., Li, X., Semon, A., Li, D., Doron, I., Putzel, G., Bar, A., Prieto, D., Rescigno, M., McGovern Dermot, P.B., et al. 2018. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science 359, 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q., Wang, C., Tang, C., He, Q., Li, N., and Li, J. 2014. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J. Clin. Gastroenterol. 48, 513–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liguori, G., Lamas, B., Richard, M.L., Brandi, G., da Costa, G., Hoffmann, T.W., Di Simone, M.P., Calabrese, C., Poggioli, G., Langella, P., et al. 2016. Fungal dysbiosis in mucosa–associated microbiota of Crohn’s disease patients. J. Crohns Colitis 10, 296.

    Article  PubMed  Google Scholar 

  • Maharshak, N., Huh, E.Y., Paiboonrungruang, C., Shanahan, M., Thurlow, L., Herzog, J., Djukic, Z., Orlando, R., Pawlinski, R., Ellermann, M., et al. 2015. Enterococcus faecalis gelatinase mediates intestinal permeability via protease–activated receptor 2. Infect. Immun. 83, 2762–2770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyoshi, J., Sofia, M.A., and Pierre, J.F. 2018. The evidence for fungus in Crohn’s disease pathogenesis. Clin. J. Gastroenterol. 11, 449–456.

    Article  PubMed  Google Scholar 

  • Morin–Sardin, S., Nodet, P., Coton, E., and Jany, J.L. 2017. Mucor: A Janus–faced fungal genus with human health impact and industrial applications. Fungal Biol. Rev. 31, 12–32.

    Article  Google Scholar 

  • Muir, A.D. and Majak, W. 1984. Quantitative determination of 3–nitropropionic acid and 3–nitropropanol in plasma by HPLC. Toxicol. Lett. 20, 133–136.

    Article  CAS  PubMed  Google Scholar 

  • Odenwald, M.A. and Turner, J.R. 2013. Intestinal permeability defects: Is it time to treat? Clin. Gastroenterol. Hepatol. 11, 1075–1083.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P., O’Hara, R., Simpson, G., Solymos, P., Stevens, M., and Wagner, H. 2012. Community ecology package. R package version 2.0–2. R Development Core Team, http://www.r–project.org/.

    Google Scholar 

  • Ott, S.J., Kühbacher, T., Musfeldt, M., Rosenstiel, P., Hellmig, S., Rehman, A., Drews, O., Weichert, W., Timmis, K.N., and Schreiber, S. 2008. Fungi and inflammatory bowel diseases: Alterations of composition and diversity. Scan. J. Gastroenterol. 43, 831–841.

    Article  CAS  Google Scholar 

  • RCoreTeam. 2017. R: a language and environment for statistical computing.

    Google Scholar 

  • Reunanen, J., Kainulainen, V., Huuskonen, L., Ottman, N.A., Belzer, C., Huhtinen, H., de Vos, W.M., and Satokari, R.M. 2015. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl. Environ. Microbiol. 81, 3655–3662.

    CAS  PubMed  Google Scholar 

  • Roden, M.M., Zaoutis, T.E., Buchanan, W.L., Knudsen, T.A., Sarkisova, T.A., Schaufele, R.L., Sein, M., Sein, T., Chiou, C.C., Chu, J.H., et al. 2005. Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin. Infect. Dis. 41, 634–653.

    Article  PubMed  Google Scholar 

  • Rodriguez, M.M., Perez, D., Chaves, F.J., Esteve, E., Marin–Garcia, P., Xifra, G., Vendrell, J., Jove, M., Pamplona, R., Ricart, W., et al. 2015. Obesity changes the human gut mycobiome. Scientific Rep. 5, 14600.

    Article  CAS  Google Scholar 

  • Saitoh, S., Noda, S., Aiba, Y., Takagi, A., Sakamoto, M., Benno, Y., and Koga, Y. 2002. Bacteroides ovatus as the predominant commensal intestinal microbe causing a systemic antibody response in inflammatory bowel disease. Clin. Diagn. Lab. Immunol. 9, 54–59.

    PubMed  PubMed Central  Google Scholar 

  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and Huttenhower, C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Snyder, A.B., Churey, J.J., and Worobo, R.W. 2016. Characterization and control of Mucor circinelloides spoilage in yogurt. Int. J. Food Microbiol. 228, 14–21.

    Article  CAS  PubMed  Google Scholar 

  • Sokol, H., Leducq, V., Aschard, H., Pham, H.P., Jegou, S., Landman, C., Cohen, D., Liguori, G., Bourrier, A., Nion–Larmurier, I., et al. 2017. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048.

    Article  CAS  PubMed  Google Scholar 

  • Spatafora, J.W., Chang, Y., Benny, G.L., Lazarus, K., Smith, M.E., Berbee, M.L., Bonito, G., Corradi, N., Grigoriev, I., Gryganskyi, A., et al. 2016. A phylum–level phylogenetic classification of zygomycete fungi based on genome–scale data. Mycologia 108, 1028–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szajewska, H. and Mrukowicz, J. 2005. Meta–analysis: non–pathogenic yeast Saccharomyces boulardii in the prevention of antibiotic–associated diarrhoea. Aliment. Pharmacol. Ther. 22, 365–372.

    Article  CAS  PubMed  Google Scholar 

  • USAToday. 2013. FDA receives dozens of reports of illness from yogurt.

    Google Scholar 

  • Walters, W.A., Pirrung, M., Peña, A.G., Huttley, G.A., Zaneveld, J., Kuczynski, J., Knights, D., Bittinger, K., Costello, E.K., Turnbaugh, P.J., et al. 2010. QIIME allows analysis of high–throughput community sequencing data. Nat. Methods 7, 335–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler, M.L., Limon, J.J., Bar, A.S., Leal, C.A., Gargus, M., Tang, J., Brown, J., Funari, V.A., Wang, H.L., Crother, T.R., et al. 2016. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe 19, 865–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, S., Lim, K.C., Huang, J., Saidi, R.F., and Sears, C.L. 1998. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E–cadherin. Proc. Natl. Acad. Sci. USA 95, 14979–14984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, V.B. and Schmidt, T.M. 2004. Antibiotic–associated diarrhea accompanied by large–scale alterations in the composition of the fecal microbiota. J. Clin. Microbiol. 42, 1203–1206.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Chan Lee.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mueller, K.D., Zhang, H., Serrano, C.R. et al. Gastrointestinal microbiota alteration induced by Mucor circinelloides in a murine model. J Microbiol. 57, 509–520 (2019). https://doi.org/10.1007/s12275-019-8682-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8682-x

Keywords

Navigation