Skip to main content
Log in

Progress of analytical tools and techniques for human gut microbiome research

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Massive DNA sequencing studies have expanded our insights and understanding of the ecological and functional characteristics of the gut microbiome. Advanced sequencing technologies allow us to understand the close association of the gut microbiome with human health and critical illnesses. In the future, analyses of the gut microbiome will provide key information associating with human individual health, which will help provide personalized health care for diseases. Numerous molecular biological analysis tools have been rapidly developed and employed for the gut microbiome researches; however, methodological differences among researchers lead to inconsistent data, limiting extensive share of data. It is therefore very essential to standardize the current methodologies and establish appropriate pipelines for human gut microbiome research. Herein, we review the methods and procedures currently available for studying the human gut microbiome, including fecal sample collection, metagenomic DNA extraction, massive DNA sequencing, and data analyses with bioinformatics. We believe that this review will contribute to the progress of gut microbiome research in the clinical and practical aspects of human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson, M., Hooker, E., Ajami, N.J., Petrosino, J.F., and Orwoll, E.S. 2017. Successful collection of stool samples for microbiome analyses from a large community-based population of elderly men. Contemp. Clin. Trials Commun. 7, 158–162.

    Article  PubMed  PubMed Central  Google Scholar 

  • Abu-Ali, G.S., Mehta, R.S., Lloyd-Price, J., Mallick, H., Branck, T., Ivey, K.L., Drew, D.A., DuLong, C., Rimm, E., Izard, J., et al. 2018. Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nat. Microbiol. 3, 356–366.

    Article  PubMed  CAS  Google Scholar 

  • Abubucker, S., Segata, N., Goll, J., Schubert, A.M., Izard, J., Cantarel, B.L., Rodriguez-Mueller, B., Zucker, J., Thiagarajan, M., Henrissat, B., et al. 2012. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput. Biol. 8, e1002358.

    Article  CAS  Google Scholar 

  • Ambardar, S., Gupta, R., Trakroo, D., Lal, R., and Vakhlu, J. 2016. High throughput sequencing: An overview of sequencing chemistry. Indian J. Microbiol. 56, 394–404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson, E.L., Li, W., Klitgord, N., Highlander, S.K., Dayrit, M., Seguritan, V., Yooseph, S., Biggs, W., Venter, J.C., Nelson, K.E., et al. 2016. A robust ambient temperature collection and stabilization strategy: Enabling worldwide functional studies of the human microbiome. Sci. Rep. 6, 31731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anhe, F.F., Varin, T.V., Le Barz, M., Desjardins, Y., Levy, E., Roy, D., and Marette, A. 2015. Gut microbiota dysbiosis in obesitylinked metabolic diseases and prebiotic potential of polyphenolrich extracts. Curr. Obes. Rep. 4, 389–400.

    Article  PubMed  Google Scholar 

  • Armanhi, J.S.L., de Souza, R.S.C., de Araújo, L.M., Okura, V.K., Mieczkowski, P., Imperial, J., and Arruda, P. 2016. Multiplex amplicon sequencing for microbe identification in community-based culture collections. Sci. Rep. 6, 29543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bag, S., Saha, B., Mehta, O., Anbumani, D., Kumar, N., Dayal, M., Pant, A., Kumar, P., Saxena, S., Allin, K.H., et al. 2016. An improved method for high quality metagenomics DNA extraction from human and environmental samples. Sci. Rep. 6, 26775.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bahl, M.I., Bergstrom, A., and Licht, T.R. 2012. Freezing fecal samples prior to DNA extraction affects the firmicutes to bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiol. Lett. 329, 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Ballester, L.Y., Luthra, R., Kanagal-Shamanna, R., and Singh, R.R. 2016. Advances in clinical next-generation sequencing: target enrichment and sequencing technologies. Expert Rev. Mol. Diagn. 16, 357–372.

    Article  PubMed  CAS  Google Scholar 

  • Bashiardes, S., Zilberman-Schapira, G., and Elinav, E. 2016. Use of metatranscriptomics in microbiome research. Bioinform. Biol. Insights 10, 19–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bassis, C.M., Moore, N.M., Lolans, K., Seekatz, A.M., Weinstein, R.A., Young, V.B., and Hayden, M.K. 2017. Comparison of stool versus rectal swab samples and storage conditions on bacterial community profiles. BMC Microbiol. 17, 78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bedarf, J.R., Hildebrand, F., Coelho, L.P., Sunagawa, S., Bahram, M., Goeser, F., Bork, P., and Wüllner, U. 2017. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Med. 9, 39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Sayers, E.W. 2013. GenBank. Nucleic Acids Res. 41, D36–42.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, D.R., Balasubramanian, S., Swerdlow, H.P., Smith, G.P., Milton, J., Brown, C.G., Hall, K.P., Evers, D.J., Barnes, C.L., Bignell, H.R., et al. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bikel, S., Valdez-Lara, A., Cornejo-Granados, F., Rico, K., Canizales-Quinteros, S., Soberon, X., Del Pozo-Yauner, L., and Ochoa-Leyva, A. 2015. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systemslevel understanding of human microbiome. Comput. Struct. Biotechnol. J. 13, 390–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boisvert, S., Raymond, F., Godzaridis, E., Laviolette, F., and Corbeil, J. 2012. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol. 13, R122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bray, J.R. and Curtis, J.T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 326–349.

    Article  Google Scholar 

  • Budding, A.E., Grasman, M.E., Eck, A., Bogaards, J.A., Vandenbroucke-Grauls, C.M.J.E., van Bodegraven, A.A., and Savelkoul, P.H.M. 2014. Rectal swabs for analysis of the intestinal microbiota. PLoS One 9, e101344.

    Article  CAS  Google Scholar 

  • Byrne, A., Beaudin, A.E., Olsen, H.E., Jain, M., Cole, C., Palmer, T., DuBois, R.M., Forsberg, E.C., Akeson, M., and Vollmers, C. 2017. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat. Commun. 8, 16027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao, Y., Fanning, S., Proos, S., Jordan, K., and Srikumar, S. 2017. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front. Microbiol. 8, 1829.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carding, S., Verbeke, K., Vipond, D.T., Corfe, B.M., and Owen, L.J. 2015. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, 26191.

    PubMed  Google Scholar 

  • Cardona, S., Eck, A., Cassellas, M., Gallart, M., Alastrue, C., Dore, J., Azpiroz, F., Roca, J., Guarner, F., and Manichanh, C. 2012. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol. 12, 158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carozzi, F.M. and Sani, C. 2013. Fecal collection and stabilization methods for improved fecal DNA test for colorectal cancer in a screening setting. J. Cancer Res. 2013, 8.

    Article  CAS  Google Scholar 

  • Carroll, I.M., Ringel-Kulka, T., Siddle, J.P., Klaenhammer, T.R., and Ringel, Y. 2012. Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLoS One 7, e46953.

    Article  CAS  Google Scholar 

  • Chandler, J.A., Liu, R.M., and Bennett, S.N. 2015. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front. Microbiol. 6, 185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Domingue, J.C., and Sears, C.L. 2017a. Microbiota dysbiosis in select human cancers: Evidence of association and causality. Semin. Immunol. 32, 25–34.

    PubMed  CAS  Google Scholar 

  • Chen, S.Y., Deng, F., Jia, X., Li, C., and Lai, S.J. 2017b. A transcriptome atlas of rabbit revealed by PacBio single-molecule longread sequencing. Sci. Rep. 7, 7648.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choo, J.M., Leong, L.E., and Rogers, G.B. 2015. Sample storage conditions significantly influence faecal microbiome profiles. Sci. Rep. 5, 16350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Claesson, M.J., Wang, Q., O’Sullivan, O., Greene-Diniz, R., Cole, J.R., Ross, R.P., and O’Toole, P.W. 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 38, e200.

    Article  CAS  Google Scholar 

  • Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., and Tiedje, J.M. 2014. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–642.

    Article  PubMed  CAS  Google Scholar 

  • D’Argenio, V., Casaburi, G., Precone, V., and Salvatore, F. 2014. Comparative metagenomic analysis of human gut microbiome composition using two different bioinformatic pipelines. Biomed. Res. Int. 2014, 325340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de la Cuesta-Zuluaga, J. and Escobar, J.S. 2016. Considerations for optimizing microbiome analysis using a marker gene. Front. Nutr. 3, 26.

    PubMed  PubMed Central  Google Scholar 

  • DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G.L. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dominianni, C., Wu, J., Hayes, R.B., and Ahn, J. 2014. Comparison of methods for fecal microbiome biospecimen collection. BMC Microbiol. 14, 103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, D. 2012. Vol.2018. http://www.mgps.eu (Accessed date: Aug. 20, 2018).

    Google Scholar 

  • Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138.

    Article  PubMed  CAS  Google Scholar 

  • Ercolini, D. 2013. High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl. Environ. Microbiol. 79, 3148–3155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flemer, B., Lynch, D.B., Brown, J.M.R., Jeffery, I.B., Ryan, F.J., Claesson, M.J., O’Riordain, M., Shanahan, F., and O’Toole, P.W. 2017. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66, 633–643.

    Article  PubMed  CAS  Google Scholar 

  • Fouhy, F., Clooney, A.G., Stanton, C., Claesson, M.J., and Cotter, P.D. 2016. 16S rRNA gene sequencing of mock microbial populations-impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiol. 16, 123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fouhy, F., Deane, J., Rea, M.C., O’Sullivan, O., Ross, R.P., O’Callaghan, G., Plant, B.J., and Stanton, C. 2015. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PLoS One 10, e0119355.

    Article  CAS  Google Scholar 

  • Frankel, A.E., Froehlich, T.W., Kim, J., Coughlin, L.A., Xie, Y., Frenkel, E.P., and Koh, A.Y. 2017. Metagenomic shotgun sequencing to identify specific human gut microbes associated with immune checkpoint therapy efficacy in melanoma patients. J. Clin. Oncol. 35, 9516–9516.

    Article  Google Scholar 

  • Franzosa, E.A., Morgan, X.C., Segata, N., Waldron, L., Reyes, J., Earl, A.M., Giannoukos, G., Boylan, M.R., Ciulla, D., Gevers, D., et al. 2014. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl. Acad. Sci. USA 111, e2329–E2338.

    Article  CAS  Google Scholar 

  • Gerasimidis, K., Bertz, M., Quince, C., Brunner, K., Bruce, A., Combet, E., Calus, S., Loman, N., and Ijaz, U.Z. 2016. The effect of DNA extraction methodology on gut microbiota research applications. BMC Res. Notes 9, 365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gigliucci, F., von Meijenfeldt, F.A.B., Knijn, A., Michelacci, V., Scavia, G., Minelli, F., Dutilh, B.E., Ahmad, H.M., Raangs, G.C., Friedrich, A.W., et al. 2018. Metagenomic characterization of the human intestinal microbiota in fecal samples from STEC-infected patients. Front. Cell. Infect. Microbiol. 8, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gocayne, J., Robinson, D.A., FitzGerald, M.G., Chung, F.Z., Kerlavage, A.R., Lentes, K.U., Lai, J., Wang, C.D., Fraser, C.M., and Venter, J.C. 1987. Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family. Proc. Natl. Acad. Sci. USA 84, 8296–8300.

    Article  PubMed  CAS  Google Scholar 

  • Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Gower, J.C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–338.

    Article  Google Scholar 

  • Guo, F. and Zhang, T. 2013. Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing. Appl. Microbiol. Biotechnol. 97, 4607–4616.

    Article  PubMed  CAS  Google Scholar 

  • Hale, V.L., Tan, C.L., Knight, R., and Amato, K.R. 2015. Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks. J. Microbiol. Methods 113, 16–26.

    Article  PubMed  Google Scholar 

  • Hamad, I., Ranque, S., Azhar, E.I., Yasir, M., Jiman-Fatani, A.A., Tissot-Dupont, H., Raoult, D., and Bittar, F. 2017. Culturomics and amplicon-based metagenomic approaches for the study of fungal population in human gut microbiota. Sci. Rep. 7, 16788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hodkinson, B.P. and Grice, E.A. 2015. Next-generation sequencing: A review of technologies and tools for wound microbiome research. Adv. Wound Care 4, 50–58.

    Article  Google Scholar 

  • Hooda, S., Boler, B.M.V., Serao, M.C.R., Brulc, J.M., Staeger, M.A., Boileau, T.W., Dowd, S.E., Fahey, J.G.C., and Swanson, K.S. 2012. 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J. Nutr. 142, 1259–1265.

    PubMed  CAS  Google Scholar 

  • Huang, K., Brady, A., Mahurkar, A., White, O., Gevers, D., Huttenhower, C., and Segata, N. 2014. MetaRef: a pan-genomic database for comparative and community microbial genomics. Nucleic Acids Res. 42, D617–624.

    Google Scholar 

  • International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature 409, 860.

    Article  Google Scholar 

  • Jain, M., Olsen, H.E., Paten, B., and Akeson, M. 2016. The Oxford nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain, M., Tyson, J.R., Loose, M., Ip, C.L.C., Eccles, D.A., O’Grady, J., Malla, S., Leggett, R.M., Wallerman, O., Jansen, H.J., et al. 2017. MinION analysis and reference consortium: Phase 2 data release and analysis of R9.0 chemistry [version 1; referees: 1 approved, 2 approved with reservations]. F1000Res. 6, 760.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jha, A.R., Davenport, E.R., Gautam, Y., Bhandari, D., Tandukar, S., Ng, K., Holmes, S., Gautam, G.P., Sherchand, J.B., Bustamante, C., et al. 2018. Gut microbiome transition across a lifestyle gradient in Himalaya. bioRxiv 253450.

    Google Scholar 

  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–114.

    Article  PubMed  CAS  Google Scholar 

  • Kchouk, M., Gibrat, J.F., and Elloumi, M. 2017. Generations of sequencing technologies: From first to next generation. Biol. Med. 9, 3.

    Article  Google Scholar 

  • Kelley, D.R., Liu, B., Delcher, A.L., Pop, M., and Salzberg, S.L. 2012. Gene prediction with glimmer for metagenomic sequences augmented by classification and clustering. Nucleic Acids Res. 40, e9.

    Article  CAS  Google Scholar 

  • Kennedy, N.A., Walker, A.W., Berry, S.H., Duncan, S.H., Farquarson, F.M., Louis, P., Thomson, J.M., Satsangi, J., Flint, H.J., Parkhill, J., et al. 2014. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PLoS One 9, e88982.

    Article  CAS  Google Scholar 

  • Kent, W.J. 2002. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kerkhof, L.J., Dillon, K.P., Häggblom, M.M., and McGuinness, L.R. 2017. Profiling bacterial communities by MinION sequencing of ribosomal operons. Microbiome 5, 116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, Y., Han, M.S., Kim, J., Kwon, A., and Lee, K.A. 2014. Evaluation of three automated nucleic acid extraction systems for identification of respiratory viruses in clinical specimens by multiplex real-time PCR. Biomed. Res. Int. 2014, 430650.

    PubMed  PubMed Central  Google Scholar 

  • Koren, S., Treangen, T.J., and Pop, M. 2011. Bambus 2: scaffolding metagenomes. Bioinformatics 27, 2964–2971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langille, M.G., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laserson, J., Jojic, V., and Koller, D. 2011. Genovo: de novo assembly for metagenomes. J. Comput. Biol. 18, 429–443.

    Article  PubMed  CAS  Google Scholar 

  • Lauber, C.L., Zhou, N., Gordon, J.I., Knight, R., and Fierer, N. 2010. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol. Lett. 307, 80–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laver, T., Harrison, J., O’Neill, P.A., Moore, K., Farbos, A., Paszkiewicz, K., and Studholme, D.J. 2015. Assessing the performance of the Oxford nanopore technologies MinION. Biomol. Detect. Quantif. 3, 1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazarevic, V., Whiteson, K., Huse, S., Hernandez, D., Farinelli, L., Osteras, M., Schrenzel, J., and Francois, P. 2009. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J. Microbiol. Methods 79, 266–271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, H., Gurtowski, J., Yoo, S., Nattestad, M., Marcus, S., Goodwin, S., McCombie, W.R., and Schatz, M. 2016. Third-generation sequencing and the future of genomics. bioRxiv 048603.

    Google Scholar 

  • Lee, J.H., Park, Y., Choi, J.R., Lee, E.K., and Kim, H.S. 2010. Comparisons of three automated systems for genomic DNA extraction in a clinical diagnostic laboratory. Yonsei Med. J. 51, 104–110.

    Article  PubMed  CAS  Google Scholar 

  • Leggett, R.M., Alcon-Giner, C., Heavens, D., Caim, S., Brook, T.C., Kujawska, M., Hoyles, L., Clarke, P., Hall, L., and Clark, M.D. 2017. Rapid MinION metagenomic profiling of the preterm infant gut microbiota to aid in pathogen diagnostics. bioRxiv 180406.

    Google Scholar 

  • Li, R., Tun, H.M., Jahan, M., Zhang, Z., Kumar, A., Fernando, D., Farenhorst, A., and Khafipour, E. 2017. Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina sequencing for detection of live bacteria in water. Sci. Rep. 7, 5752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G., Kristiansen, K., et al. 2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, W. and Godzik, A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659.

    Article  PubMed  CAS  Google Scholar 

  • Liang, D., Leung, R.K.K., Guan, W., and Au, W.W. 2018. Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut. Pathogens. 10, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim, M.Y., Song, E.J., Kim, S.H., Lee, J., and Nam, Y.D. 2018. Comparison of DNA extraction methods for human gut microbial community profiling. Syst. Appl. Microbiol. 41, 151–157.

    Article  PubMed  CAS  Google Scholar 

  • Ling, Z., Liu, X., Luo, Y., Yuan, L., Nelson, K.E., Wang, Y., Xiang, C., and Li, L. 2013. Pyrosequencing analysis of the human microbiota of healthy Chinese undergraduates. BMC Genomics 14, 390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., and Law, M. 2012. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012, 251364.

    PubMed  PubMed Central  Google Scholar 

  • Loman, N.J., Misra, R.V., Dallman, T.J., Constantinidou, C., Gharbia, S.E., Wain, J., and Pallen, M.J. 2012. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30, 434–439.

    Article  PubMed  CAS  Google Scholar 

  • Lozupone, C., Hamady, M., and Knight, R. 2006. UniFrac–an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7, 371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, S., Park, M., Ro, H.S., Lee, D.S., Park, W., and Jeon, C.O. 2006. Analysis of microbial communities using culture-dependent and culture-independent approaches in an anaerobic/aerobic SBR reactor. J. Microbiol. 44, 155–161.

    PubMed  CAS  Google Scholar 

  • Mardis, E.R. 2013. Next-generation sequencing platforms. Annu. Rev. Anal. Chem. 6, 287–303.

    Article  CAS  Google Scholar 

  • Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Markowitz, V.M., Chen, I.M., Chu, K., Szeto, E., Palaniappan, K., Pillay, M., Ratner, A., Huang, J., Pagani, I., Tringe, S., et al. 2014. IMG/M 4 version of the integrated metagenome comparative analysis system. Nucleic Acids Res. 42, D568–573.

    Google Scholar 

  • Markowitz, V.M., Chen, I.M., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A., Jacob, B., Huang, J., Williams, P., et al. 2012. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 40, D115–122.

    Google Scholar 

  • Maukonen, J., Simoes, C., and Saarela, M. 2012. The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiol. Ecol. 79, 697–708.

    Article  PubMed  CAS  Google Scholar 

  • Maxam, A.M. and Gilbert, W. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74, 560–564.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, A. 2010. Third generation DNA sequencing: pacific biosciences’ single molecule real time technology. Chem. Biol. 17, 675–676.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., et al. 2008. The metagenomics RAST server-a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Myer, P.R., Kim, M., Freetly, H.C., and Smith, T.P.L. 2016. Metagenomic and near full-length 16S rRNA sequence data in support of the phylogenetic analysis of the rumen bacterial community in steers. Data Brief 8, 1048–1053.

    Article  PubMed  PubMed Central  Google Scholar 

  • Namiki, T., Hachiya, T., Tanaka, H., and Sakakibara, Y. 2012. Meta-Velvet: an extension of velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res. 40, e155.

    Article  CAS  Google Scholar 

  • Neefs, J.M., Van de Peer, Y., De Rijk, P., Chapelle, S., and De Wachter, R. 1993. Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res. 21, 3025–3049.

    PubMed  CAS  Google Scholar 

  • Nguyen, L.D.N., Deschaght, P., Merlin, S., Loywick, A., Audebert, C., Van Daele, S., Viscogliosi, E., Vaneechoutte, M., and Delhaes, L. 2016. Effects of propidium monoazide (PMA) treatment on mycobiome and bacteriome analysis of cystic fibrosis airways during exacerbation. PLoS One 11, e0168860.

    Google Scholar 

  • Nilakanta, H., Drews, K.L., Firrell, S., Foulkes, M.A., and Jablonski, K.A. 2014. A review of software for analyzing molecular sequences. BMC Res. Notes 7, 830.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nocker, A., Cheung, C.Y., and Camper, A.K. 2006. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Methods 67, 310–320.

    Article  PubMed  CAS  Google Scholar 

  • Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Parrello, B., Shukla, M., et al. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42, D206–D214.

    Google Scholar 

  • Parks, D.H., Tyson, G.W., Hugenholtz, P., and Beiko, R.G. 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng, Y., Leung, H.C., Yiu, S.M., and Chin, F.Y. 2011. Meta-IDBA: a de novo assembler for metagenomic data. Bioinformatics 27, i94–101.

    Google Scholar 

  • Pillai, S., Gopalan, V., and Lam, A.K. 2017. Review of sequencing platforms and their applications in phaeochromocytoma and paragangliomas. Crit. Rev. Oncol. Hematol. 116, 58–67.

    Article  PubMed  Google Scholar 

  • Pinchi, V., Focardi, M., Martinelli, D., Norelli, G.A., Carboni, I., Gozzini, A., Romolini, C., Torricelli, F., and Ricci, U. 2013. DNA extraction method from teeth using QIAcube. Forensic Sci. Int. Genet. Suppl. Ser. 4, e276–e277.

    Article  Google Scholar 

  • Plummer, E. Twin, J., Bulach, D.M., Garland, S.M., and Tabtizi, S.N. 2015. A comparison of three bioinformatics pipelines for the analysis of preterm gut microbiota using 16S rRNA gene sequencing data. J. Proteomics Bioinform. 8, 283–291.

    Article  Google Scholar 

  • Powell, S., Forslund, K., Szklarczyk, D., Trachana, K., Roth, A., Huerta-Cepas, J., Gabaldon, T., Rattei, T., Creevey, C., Kuhn, M., et al. 2014. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res. 42, D231–239.

    Google Scholar 

  • Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quince, C., Walker, A.W., Simpson, J.T., Loman, N.J., and Segata, N. 2017. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833.

    Article  PubMed  CAS  Google Scholar 

  • Reuter, J.A., Spacek, D.V., and Snyder, M.P. 2015. High-throughput sequencing technologies. Mol. Cell. 58, 586–597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rho, M., Tang, H., and Ye, Y. 2010. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 38, e191.

    Article  CAS  Google Scholar 

  • Rhoads, A. and Au, K.F. 2015. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13, 278–289.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rintala, A., Pietilä, S., Munukka, E., Eerola, E., Pursiheimo, J.P., Laiho, A., Pekkala, S., and Huovinen, P. 2017. Gut microbiota analysis results are highly dependent on the 16S rRNA gene target region, whereas the impact of DNA extraction is minor. J. Biomol. Tech. 28, 19–30.

    PubMed  PubMed Central  Google Scholar 

  • Rizzo, J.M. and Buck, M.J. 2012. Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev. Res. (Phila) 5, 887–900.

    Article  CAS  Google Scholar 

  • Rochelle, P.A., Cragg, B.A., Fry, J.C., John Parkes, R., and Weightman, A.J. 1994. Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol. Ecol. 15, 215–225.

    Article  CAS  Google Scholar 

  • Rodrigues Hoffmann, A., Proctor, L.M., Surette, M.G., and Suchodolski, J.S. 2016. The microbiome: The trillions of microorganisms that maintain health and cause disease in humans and companion animals. Vet. Pathol. 53, 10–21.

    Article  PubMed  CAS  Google Scholar 

  • Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlen, M., and Nyren, P. 1996. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 242, 84–89.

    Article  PubMed  CAS  Google Scholar 

  • Rothberg, J.M., Hinz, W., Rearick, T.M., Schultz, J., Mileski, W., Davey, M., Leamon, J.H., Johnson, K., Milgrew, M.J., Edwards, M., et al. 2011. An integrated semiconductor device enabling nonoptical genome sequencing. Nature 475, 348–352.

    Article  PubMed  CAS  Google Scholar 

  • Rothberg, J.M. and Leamon, J.H. 2008. The development and impact of 454 sequencing. Nat. Biotechnol. 26, 1117.

    Article  PubMed  CAS  Google Scholar 

  • Salonen, A., Nikkila, J., Jalanka-Tuovinen, J., Immonen, O., Rajilic-Stojanovic, M., Kekkonen, R.A., Palva, A., and de Vos, W.M. 2010. Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J. Microbiol. Methods 81, 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F., Air, G.M., Barrell, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchison Iii, C.A., Slocombe, P.M., and Smith, M. 1977a. Nucleotide sequence of bacteriophage φX174 DNA. Nature 265, 687.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F., Coulson, A.R., Hong, G.F., Hill, D.F., and Petersen, G.B. 1982. Nucleotide sequence of bacteriophage λ DNA. J. Mol. Biol. 162, 729–773.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A.R. 1977b. DNA sequencing with chain-terminating inhibitors. Proc. Nat. Acad. Sci. USA 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Schloss, P.D., Jenior, M.L., Koumpouras, C.C., Westcott, S.L., and Highlander, S.K. 2016. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. PeerJ 4, e1869.

    Article  CAS  Google Scholar 

  • Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., et al. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183.

    Article  PubMed  CAS  Google Scholar 

  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and Huttenhower, C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.

    Google Scholar 

  • Sharon, D., Tilgner, H., Grubert, F., and Snyder, M. 2013. A singlemolecule long-read survey of the human transcriptome. Nat. Biotechnol. 31, 1009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shendure, J., Balasubramanian, S., Church, G.M., Gilbert, W., Rogers, J., Schloss, J.A., and Waterston, R.H. 2017. DNA sequencing at 40: past, present and future. Nature 550, 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Shendure, J. and Ji, H. 2008. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135.

    Article  PubMed  CAS  Google Scholar 

  • Shepard, R.N. 1966. Metric structures in ordinal data. J. Math. Psychol. 3, 287–315.

    Article  Google Scholar 

  • Sheridan, G.E.C., Masters, C.I., Shallcross, J.A., and Mackey, B.M. 1998. Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl. Environ. Microbiol. 64, 1313–1318.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Siegwald, L., Audebert, C., Even, G., Viscogliosi, E., Caboche, S., and Chabé, M. 2017. Targeted metagenomic sequencing data of human gut microbiota associated with Blastocystis colonization. Sci. Data 4, 170081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sinha, R., Chen, J., Amir, A., Vogtmann, E., Shi, J., Inman, K.S., Flores, R., Sampson, J., Knight, R., and Chia, N. 2016. Collecting fecal samples for microbiome analyses in epidemiology studies. Cancer Epidemiol. Biomarkers Prev. 25, 407–416.

    Article  PubMed  Google Scholar 

  • Smith, B., Li, N., Andersen, A.S., Slotved, H.C., and Krogfelt, K.A. 2011. Optimising bacterial DNA extraction from faecal samples: comparison of three methods. Open Microbiol. J. 5, 14–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stadlbauer, V., Leber, B., Lemesch, S., Trajanoski, S., Bashir, M., Horvath, A., Tawdrous, M., Stojakovic, T., Fauler, G., Fickert, P., et al. 2015. Lactobacillus casei shirota supplementation does not restore gut microbiota composition and gut barrier in metabolic syndrome: A randomized pilot study. PLoS One 10, e0141399.

    Google Scholar 

  • Stinson, L.F., Keelan, J.A., and Payne, M.S. 2018. Comparison of meconium DNA extraction methods for use in microbiome studies. Front. Microbiol. 9, 270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tantikachornkiat, M., Sakakibara, S., Neuner, M., and Durall, D.M. 2016. The use of propidium monoazide in conjunction with qPCR and Illumina sequencing to identify and quantify live yeasts and bacteria. Int. J. Food Microbiol. 234, 53–59.

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796.

    Article  Google Scholar 

  • The HMP consortium. 2012. A framework for human microbiome research. Nature 486, 215–221.

    Article  CAS  Google Scholar 

  • The Integrative HMP (iHMP) Research Network Consortium. 2014. The integrative human microbiome project: Dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16, 276–289.

    Article  PubMed Central  CAS  Google Scholar 

  • The UniProt Consortium. 2017. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169.

    Article  CAS  Google Scholar 

  • Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., Locey, K.J., Prill, R.J., Tripathi, A., Gibbons, S.M., Ackermann, G., et al. 2017. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tremblay, J., Singh, K., Fern, A., Kirton, E.S., He, S., Woyke, T., Lee, J., Chen, F., Dangl, J.L., and Tringe, S.G. 2015. Primer and platform effects on 16S rRNA tag sequencing. Front. Microbiol. 6, 771.

    PubMed  PubMed Central  Google Scholar 

  • Tsai, Y.C., Conlan, S., Deming, C., Segre, J.A., Kong, H.H., Korlach, J., and Oh, J. 2016. Resolving the complexity of human skin metagenomes using single-molecule sequencing. MBio 7, e01948-01915.

    Article  CAS  Google Scholar 

  • Tyakht, A.V., Kostryukova, E.S., Popenko, A.S., Belenikin, M.S., Pavlenko, A.V., Larin, A.K., Karpova, I.Y., Selezneva, O.V., Semashko, T.A., Ospanova, E.A., et al. 2013. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun. 4, 2469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaishampayan, P., Probst, A.J., La Duc, M.T., Bargoma, E., Benardini, J.N., Andersen, G.L., and Venkateswaran, K. 2013. New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME J. 7, 312–324.

    Article  PubMed  CAS  Google Scholar 

  • Veiga, P., Pons, N., Agrawal, A., Oozeer, R., Guyonnet, D., Brazeilles, R., Faurie, J.M., van Hylckama Vlieg, J.E.T., Houghton, L.A., Whorwell, P.J., et al. 2014. Changes of the human gut microbiome induced by a fermented milk product. Sci. Rep. 4, 6328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner Mackenzie, B., Waite, D.W., and Taylor, M.W. 2015. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front. Microbiol. 6, 130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Warner, B.B., Deych, E., Zhou, Y., Hall-Moore, C., Weinstock, G.M., Sodergren, E., Shaikh, N., Hoffmann, J.A., Linneman, L.A., Hamvas, A., et al. 2016. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective casecontrol study. Lancet (London, England) 387, 1928–1936.

    Article  Google Scholar 

  • Weinstock, G.M. 2012. Genomic approaches to studying the human microbiota. Nature 489, 250–256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wesolowska-Andersen, A., Bahl, M.I., Carvalho, V., Kristiansen, K., Sicheritz-Ponten, T., Gupta, R., and Licht, T.R. 2014. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome 2, 19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, W.K., Chen, C.C., Panyod, S., Chen, R.A., Wu, M.S., Sheen, L.Y., and Chang, S.C. 2018. Optimization of fecal sample processing for microbiome study–The journey from bathroom to bench. J. Formos. Med. Assoc. In-press.

    Google Scholar 

  • Yanagi, H., Tsuda, A., Matsushima, M., Takahashi, S., Ozawa, G., Koga, Y., and Takagi, A. 2017. Changes in the gut microbiota composition and the plasma ghrelin level in patients with Helicobacter pylori-infected patients with eradication therapy. BMJ Open Gastroenterol. 4, e000182.

    Article  Google Scholar 

  • Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W., and Glockner, F.O. 2014. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–648.

    Google Scholar 

  • Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., and Xu, Y. 2012. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–451.

    Google Scholar 

  • Yuan, S., Cohen, D.B., Ravel, J., Abdo, Z., and Forney, L.J. 2012. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One 7, e33865.

    Article  CAS  Google Scholar 

  • Zheng, Z., Zhong, W., Liu, L., Wu, C., Zhang, L., Cai, S., Xu, Q., Wu, L., Bi, Y., Cui, Y., and Qin, N. 2016. Bioinformatics approaches for human gut microbiome research. Infect. Dis. Transl. Med. 2, 69–79.

    Google Scholar 

  • Zhu, W., Lomsadze, A., and Borodovsky, M. 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Do Nam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, EJ., Lee, ES. & Nam, YD. Progress of analytical tools and techniques for human gut microbiome research. J Microbiol. 56, 693–705 (2018). https://doi.org/10.1007/s12275-018-8238-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8238-5

Keywords

Navigation