Skip to main content
Log in

Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration?

Journal of Microbiology Aims and scope Submit manuscript

Abstract

Indole is an organic compound that is widespread in microbial communities inhabiting diverse habitats, like the soil environment and human intestines. Measurement of indole production is a traditional method for the identification of microbial species. Escherichia coli can produce millimolar concentrations of indole in the stationary growth phase under nutrient-rich conditions. Indole has received considerable attention because of its remarkable effects on various biological functions of the microbial communities, for example, biofilm formation, motility, virulence, plasmid stability, and antibiotic resistance. Indole may function as an intercellular signaling molecule, like a quorum-sensing signal. Nevertheless, a receptor system for indole and the function of this compound in coordinated behavior of a microbial population (which are requirements for a true signaling molecule) have not yet been confirmed. Recent findings suggest that a long-known quorum-sensing regulator, E. coli’s SdiA, cannot recognize indole and that this compound may simply cause membrane disruption and energy reduction, which can lead to various changes in bacterial physiology including unstable folding of a quorum-sensing regulator. Indole appears to be responsible for acquisition of antibiotic resistance via the formation of persister cells and activation of an exporter. This review highlights and summarizes the current knowledge about indole as a multitrophic molecule among bacteria, together with recently identified new avenues of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ahmer, B.M. 2004. Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol. Microbiol. 52, 933–945.

    Article  CAS  PubMed  Google Scholar 

  • Andrade, L.F., De Souza, G.L., Nietsche, S., Xavier, A.A., Costa, M.R., Cardoso, A.M., Pereira, M.C., and Pereira, D.F. 2014. Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. J. Microbiol. 52, 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Awano, N., Wada, M., Mori, H., Nakamori, S., and Takagi, H. 2005. Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl. Environ. Microbiol. 71, 4149–4152.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bansal, T., Alaniz, R.C., Wood, T.K., and Jayaraman, A. 2010. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. USA 107, 228–233.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beggs, W.H. and Lichstein, H.C. 1965. Repression of tryptophanase synthesis in Escherichia coli. J. Bacteriol. 89, 996–1004.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bianco, C., Imperlini, E., Calogero, R., Senatore, B., Amoresano, A., Carpentieri, A., Pucci, P., and Defez, R. 2006a. Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch. Microbiol. 185, 373–382.

    Article  CAS  PubMed  Google Scholar 

  • Bianco, C., Imperlini, E., Calogero, R., Senatore, B., Pucci, P., and Defez, R. 2006b. Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli. Microbiology 152, 2421–2431.

    Article  CAS  PubMed  Google Scholar 

  • Botsford, J.L. 1975. Metabolism of cyclic adenosine 3’,5’-monophosphate and induction of tryptophanase in Escherichia coli. J. Bacteriol. 124, 380–390.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Botsford, J.L. and DeMoss, R.D. 1971. Catabolite repression of tryptophanase in Escherichia coli. J. Bacteriol. 105, 303–312.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Botsford, J.L. and DeMoss, R.D. 1972. Escherichia coli tryptophanase in the enteric environment. J. Bacteriol. 109, 74–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boyd, C., Larkin, M.J., Reid, K.A., Sharma, N.D., and Wilson, K. 1997. Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus sp. strain NCIMB 12038. Appl. Environ. Microbiol. 63, 151–155.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brachmann, A.O., Brameyer, S., Kresovic, D., Hitkova, I., Kopp, Y., Manske, C., Schubert, K., Bode, H.B., and Heermann, R. 2013. Pyrones as bacterial signaling molecules. Nat. Chem. Biol. 9, 573–578.

    Article  CAS  PubMed  Google Scholar 

  • Brameyer, S., Kresovic, D., Bode, H.B., and Heermann, R. 2015. Dialkylresorcinols as bacterial signaling molecules. Proc. Natl. Acad. Sci. USA 112, 572–577.

    Article  CAS  PubMed  Google Scholar 

  • Chai, Y. and Winans, S.C. 2009. The chaperone GroESL enhances the accumulation of soluble, active TraR protein, a quorumsensing transcription factor from Agrobacterium tumefaciens. J. Bacteriol. 191, 3706–3711.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, C.C., Walia, R., Mukherjee, K.J., Mahalik, S., and Summers, D.K. 2015. Indole generates quiescent and metabolically active Escherichia coli cultures. Biotechnol. J. 10, 636–646.

    Article  CAS  PubMed  Google Scholar 

  • Chimerel, C., Field, C.M., Piñero-Fernandez, S., Keyser, U.F., and Summers, D.K. 2012. Indole prevents Escherichia coli cell division by modulating membrane potential. Biochim. Biophys. Acta. 1818, 1590–1594.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chu, W., Zere, T.R., Weber, M.M., Wood, T.K., Whiteley, M., Hidalgo-Romano, B., Valenzuela, E. Jr., and McLean, R.J. 2012. Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling. Appl. Environ. Microbiol. 78, 411–419.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costa, E.D., Chai, Y., and Winans, S.C. 2012. The quorum-sensing protein TraR of Agrobacterium tumefaciens is susceptible to intrinsic and TraM-mediated proteolytic instability. Mol. Microbiol. 84, 807–815.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeMoss, R.D. and Moser, K. 1969. Tryptophanase in diverse bacterial species. J. Bacteriol. 98, 167–171.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erb, M., Veyrat, N., Robert, C.A., Xu, H., Frey, M., Ton, J., and Turlings, T.C. 2015. Indole is an essential herbivore-induced volatile priming signal in maize. Nat. Commun. 6, 6273.

    CAS  Google Scholar 

  • Field, C.M. and Summers, D.K. 2012. Indole inhibition of ColE1 replication contributes to stable plasmid maintenance. Plasmid 67, 88–94.

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa, S., Kadoma, Y., Ishihara, M., Shibuya, K., and Yokoe, I. 2006. Kinetic radical-scavenging activity of melatonin. In Vivo 20, 215–220.

    CAS  PubMed  Google Scholar 

  • Fuqua, W.C., Winans, S.C., and Greenberg, E.P. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaimster, H., Cama, J., Hernández-Ainsa, S., Keyser, U.F., and Summers, D.K. 2014. The indole pulse: a new perspective on indole signalling in Escherichia coli. PLoS One 9, e93168.

  • Gillam, E.M., Notley, L.M., Cai, H., De Voss, J.J., and Guengerich, F.P. 2000. Oxidation of indole by cytochrome P450 enzymes. Biochemistry 39, 13817–13824.

    Google Scholar 

  • Han, G.H., Gim, G.H., Kim, W., Seo, S.I., and Kim, S.W. 2012. Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation. J. Biotechnol. 164, 179–187.

    Article  CAS  PubMed  Google Scholar 

  • Han, T.H., Lee, J.H., Cho, M.H., Wood, T.K., and Lee, J. 2011. Environmental factors affecting indole production in Escherichia coli. Res. Microbiol. 162, 108–116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helling, R.B., Janes, B.K., Kimball, H., Tran, T., Bundesmann, M., Check, P., Phelan, D., and Miller, C. 2002. Toxic waste disposal in Escherichia coli. J. Bacteriol. 184, 3699–3703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hidalgo-Romano, B., Gollihar, J., Brown, S.A., Whiteley, M., Valenzuela, E. Jr., Kaplan, H.B., Wood, T.K., and McLean, R.J. 2014. Indole inhibition of N-acylated homoserine lactone-mediated quorum signalling is widespread in Gram-negative bacteria. Microbiology 160, 2464–2473.

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa, H., Hayashi-Nishino, M., Yamaguchi, A., and Nishino, K. 2010. Indole enhances acid resistance in Escherichia coli. Microb. Pathog. 49, 90–94.

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa, H., Inazumi, Y., Masaki, T., Hirata, T., and Yamaguchi, A. 2005. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol. Microbiol. 55, 1113–1126.

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa, H., Kodama, T., Takumi-Kobayashi, A., Honda, T., and Yamaguchi, A. 2009. Secreted indole serves as a signal for expression of type III secretion system translocators in enterohaemorrhagic Escherichia coli O157:H7. Microbiology 155, 541–550.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, O.H., Raveendar, S., Kim, Y.J., Kim, J.H., Choi, J.W., Kim, T.H., Choi, D.Y., Jeon, C.O., Cho, S.B., and Lee, K.T. 2014. Deodorization of pig slurry and characterization of bacterial diversity using 16S rDNA sequence analysis. J. Microbiol. 52, 918–929.

    Article  CAS  PubMed  Google Scholar 

  • Isaacs, H. Jr., Chao, D., Yanofsky, C., and Saier, M.H. Jr. 1994. Mechanism of catabolite repression of tryptophanase synthesis in Escherichia coli. Microbiology 140, 2125–2134.

    Article  CAS  PubMed  Google Scholar 

  • Karlin, D.A., Mastromarino, A.J., Jones, R.D., Stroehlein, J.R., and Lorentz, O. 1985. Fecal skatole and indole and breath methane and hydrogen in patients with large bowel polyps or cancer. J. Cancer Res. Clin. Oncol. 109, 135–141.

    Article  CAS  PubMed  Google Scholar 

  • Kawamura-Sato, K., Shibayama, K., Horii, T., Iimuma, Y., Arakawa, Y., and Ohta, M. 1999. Role of multiple efflux pumps in Escherichia coli in indole expulsion. FEMS Microbiol. Lett. 179, 345–352.

    Article  CAS  PubMed  Google Scholar 

  • Khan, A.L., Waqas, M., Kang, S.M., Al-Harrasi, A., Hussain, J., Al-Rawahi, A., Al-Khiziri, S., Ullah, I., Ali, L., Jung, H.Y., et al. 2014. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J. Microbiol. 52, 689–695.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Hong, H., Heo, A., and Park, W. 2013. Indole toxicity involves the inhibition of adenosine triphosphate production and protein folding in Pseudomonas putida. FEMS Microbiol. Lett. 343, 89–99.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. and Park, W. 2013. Indole inhibits bacterial quorum sensing signal transmission by interfering with quorum sensing regulator folding. Microbiology 159, 2616–2625.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.K., Park, H.Y., and Lee, J.H. 2015. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect. Appl. Environ. Microbiol. 81, 2328–2338.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, A., Hirakawa, H., Hirata, T., Nishino, K., and Yamaguchi, A. 2006. Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J. Bacteriol. 188, 5693–5703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurnasov, O., Jablonski, L., Polanuyer, B., Dorrestein, P., Begley, T., and Osterman, A. 2003. Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Microbiol. Lett. 227, 219–227.

    Article  CAS  PubMed  Google Scholar 

  • Leclerc, S., Garnier, M., Hoessel, R., Marko, D., Bibb, J.A., Snyder, G.L., Greengard, P., Biernat, J., Wu, Y.Z., Mandelkow, E.M., et al. 2001. Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? J. Biol. Chem. 276, 251–260.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Attila, C., Cirillo, S.L., Cirillo, J.D., and Wood, T.K. 2009a. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb. Biotechnol. 2, 75–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, J., Jayaraman, A., and Wood, T.K. 2007. Indole is an interspecies biofilm signal mediated by SdiA. BMC Microbiol. 7, 42.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee, J.H., Kim, Y.G., Baek, K.H., Cho, M.H., and Lee, J. 2015. The multifaceted roles of the interspecies signalling molecule indole in Agrobacterium tumefaciens. Environ. Microbiol. 17, 1234–1244.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.H. and Lee, J. 2010. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 34, 426–444.

    CAS  PubMed  Google Scholar 

  • Lee, J., Maeda, T., Hong, S.H., and Wood, T.K. 2009b. Reconfiguring the quorum-sensing regulator SdiA of Escherichia coli to control biofilm formation via indole and N-acylhomoserine lactones. Appl. Environ. Microbiol. 75, 1703–1716.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, H.H., Molla, M.N., Cantor, C.R., and Collins, J.J. 2010a. Bacterial charity work leads to population-wide resistance. Nature 467, 82–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, Y., Yeom, J., Kim, J., Jung, J., Jeon, C.O., and Park, W. 2010b. Phenotypic and physiological alterations by heterologous acylhomoserine lactone synthase expression in Pseudomonas putida. Microbiology 156, 3762–3772.

    Article  CAS  PubMed  Google Scholar 

  • Li, G. and Young, K.D. 2013. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology 159, 402–410.

    Article  CAS  PubMed  Google Scholar 

  • Marketon, M.M. and González, J.E. 2002. Identification of two quorum-sensing systems in Sinorhizobium meliloti. J. Bacteriol. 184, 3466–3475.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Masciarelli, O., Urbani, L., Reinoso, H., and Luna, V. 2013. Alternative mechanism for the evaluation of indole-3-acetic acid (IAA) production by Azospirillum brasilense strains and its effects on the germination and growth of maize seedlings. J. Microbiol. 51, 590–597.

    Article  CAS  PubMed  Google Scholar 

  • Molina-Santiago, C., Daddaoua, A., Fillet, S., Duque, E., and Ramos, J.L. 2014. Interspecies signaling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance. Environ. Microbiol. 16, 1267–1281.

    Article  CAS  PubMed  Google Scholar 

  • Mordukhova, E.A., Sokolov, S.L., Kochetkov, V.V., Kosheleva, I.A., Zelenkova, N.F., and Boronin, A.M. 2000. Involvement of naphthalene dioxygenase in indole-3-acetic acid biosynthesis by Pseudomonas putida. FEMS Microbiol. Lett. 190, 279–285.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, R.S., Beyhan, S., Saini, S.G., Yildiz, F.H., and Bartlett, D.H. 2009. Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J. Bacteriol. 191, 3504–3516.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newton, W.A. and Snell, E.E. 1965. Formation and interrelationships of tryptophanase and tryptophan synthetases in Escherichia coli. J. Bacteriol. 89, 355–364.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen, Y., Nguyen, N.X., Rogers, J.L., Liao, J., MacMillan, J.B., Jiang, Y., and Sperandio, V. 2015. Structural and mechanistic roles of novel chemical ligands on the SdiA quorum-sensing transcription regulator. MBio 6, e02429–14.

  • Nikaido, E., Giraud, E., Baucheron, S., Yamasaki, S., Wiedemann, A., Okamoto, K., Takagi, T., Yamaguchi, A., Cloeckaert, A., and Nishino, K. 2012. Effects of indole on drug resistance and virulence of Salmonella enterica serovar Typhimurium revealed by genome-wide analyses. Gut Pathog. 25, 5.

    Article  Google Scholar 

  • Oguri, T., Schneider, B., and Reitzer, L. 2012. Cysteine catabolism and cysteine desulfhydrase (CdsH/STM0458) in Salmonella enterica serovar typhimurium. J. Bacteriol. 194, 4366–4376.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng, P., Yang, H., Jia, R., and Li, L. 2013. Biodegradation of dioxin by a newly isolated Rhodococcus sp. with the involvement of self-transmissible plasmids. Appl. Microbiol. Biotechnol. 97, 5585–5595.

    Article  CAS  PubMed  Google Scholar 

  • Piñero-Fernandez, S., Chimerel, C., Keyser, U.F., and Summers, D.K. 2011. Indole transport across Escherichia coli membranes. J. Bacteriol. 193, 1793–1798.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rompf, A., Schmid, R., and Jahn, D. 1998. Changes in protein synthesis as a consequence of heme depletion in Escherichia coli. Curr. Microbiol. 37, 226–230.

    Article  CAS  PubMed  Google Scholar 

  • Rui, L., Reardon, K.F., and Wood, T.K. 2005. Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl. Microbiol. Biotechnol. 66, 422–429.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, R.P. and Dow, J.M. 2008. Diffusible signals and interspecies communication in bacteria. Microbiology 154, 1845–1858.

    Article  CAS  PubMed  Google Scholar 

  • Sabag-Daigle, A., Soares, J.A., Smith, J.N., Elmasry, M.E., and Ahmer, B.M. 2012. The acyl homoserine lactone receptor, SdiA, of Escherichia coli and Salmonella enterica serovar Typhimurium does not respond to indole. Appl. Environ. Microbiol. 78, 5424–5431.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saint-Ruf, C., Garfa-Traoré, M., Collin, V., Cordier, C., Franceschi, C., and Matic, I. 2014. Massive diversification in aging colonies of Escherichia coli. J. Bacteriol. 196, 3059–3073.

    Article  PubMed Central  PubMed  Google Scholar 

  • Saito, H. and Kobayashi, H. 2003. Bacterial responses to alkaline stress. Sci. Prog. 86, 271–282.

    Article  CAS  PubMed  Google Scholar 

  • Sims, J. and Renwick, A.G. 1983. The effects of saccharin on the metabolism of dietary tryptophan to indole, a known cocarcinogen for the urinary bladder of the rat. Toxicol. Appl. Pharmacol. 67, 132–151.

    Article  CAS  PubMed  Google Scholar 

  • Snell, EE. 1975. Tryptophanase: structure, catalytic activities, and mechanism of action. Adv. Enzymol. Relat. Areas Mol. Biol. 42, 287–333.

    CAS  PubMed  Google Scholar 

  • Stamm, I., Lottspeich, F., and Plaga, W. 2005. The pyruvate kinase of Stigmatella aurantiaca is an indole binding protein and essential for development. Mol. Microbiol. 56, 1386–1395.

    Article  CAS  PubMed  Google Scholar 

  • Sulavik, M.C., Gambino, L.F., and Miller, P.F. 1995. The MarR repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds. Mol. Med. 1, 436–446.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turlings, T.C., Tumlinson, J.H., and Lewis, W.J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250, 1251–1253.

    Article  CAS  PubMed  Google Scholar 

  • Vannini, A., Volpari, C., Gargioli, C., Muraglia, E., Cortese, R., De Francesco, R., Neddermann, P., and Marco, S.D. 2002. The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J. 21, 4393–4401.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vega, N.M., Allison, K.R., Khalil, A.S., and Collins, J.J. 2012. Signaling-mediated bacterial persister formation. Nat. Chem. Biol. 8, 431–433.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vega, N.M., Allison, K.R., Samuels, A.N., Klempner, M.S., and Collins, J.J. 2013. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc. Natl. Acad. Sci. USA 110, 14420–14425.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, D., Ding, X., and Rather, P.N. 2001. Indole can act as an extracellular signal in Escherichia coli. J. Bacteriol. 183, 4210–4216.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weatherspoon-Griffin, N., Yang, D., Kong, W., Hua, Z., and Shi, Y. 2014. The CpxR/CpxA two-component regulatory system upregulates the multidrug resistance cascade to facilitate Escherichia coli resistance to a model antimicrobial peptide. J. Biol. Chem. 289, 32571–32582.

    Article  CAS  PubMed  Google Scholar 

  • Wikoff, W.R., Anfora, A.T., Liu, J., Schultz, P.G., Lesley, S.A., Peters, E.C., and Siuzdak, G. 2009. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 106, 3698–3703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams, P. 2007. Quorum sensing, communication and crosskingdom signalling in the bacterial world. Microbiology 153, 3923–3938.

    Article  CAS  PubMed  Google Scholar 

  • Yanofsky, C., Horn, V., and Gollnick, P. 1991. Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. J. Bacteriol. 173, 6009–6017.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yao, Y., Martinez-Yamout, M.A., Dickerson, T.J., Brogan, A.P., Wright, P.E., and Dyson, H.J. 2006. Structure of the Escherichia coli quorum sensing protein SdiA, activation of the folding switch by acyl homoserine lactones. J. Mol. Biol. 355, 262–273.

    Article  CAS  PubMed  Google Scholar 

  • Yin, B., Gu, J.D., and Wan, N. 2005. Degradation of indole by enrichment culture and Pseudomonas aeruginosa Gs isolated from mangrove sediment. Int. Biodeter. Biodegr. 56, 243–248.

    Article  CAS  Google Scholar 

  • Zhang, R.G., Pappas, K.M., Brace, J.L., Miller, P.C., Oulmassov, T., Molyneaux, J.M., Anderson, J.C., Bashkin, J.K., Winans, S.C., and Joachimiak, A. 2002. Structure of a bacterial quorumsensing transcription factor complexed with pheromone and DNA. Nature 417, 971–974.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J. and Winans, S.C. 2001. The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc. Natl. Acad. Sci. USA 98, 1507–1512.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuccato, E., Venturi, M., Di Leo, G., Colombo, L., Bertolo, C., Doldi, S.B., and Mussini, E. 1993. Role of bile acids and metabolic activity of colonic bacteria in increased risk of colon cancer after cholecystectomy. Dig. Dis. Sci. 38, 514–519.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojun Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Park, W. Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration?. J Microbiol. 53, 421–428 (2015). https://doi.org/10.1007/s12275-015-5273-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-5273-3

Keywords

Navigation