Skip to main content
Log in

Solid state production of polygalacturonase and xylanase by Trichoderma species using cantaloupe and watermelon rinds

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Different solid state fermentation (SSF) sources were tested such as cantaloupe and watermelon rinds, orange and banana peels, for the production of polygalacturonase (PG) and xylanase (Xyl) by Trichoderma harzianum and Trichoderma virens. The maximum production of both PG and Xyl were obtained by T. harzianum and T. virnes grown on cantaloupe and watermelon rinds, respectively. Time course, moisture content, temperature, pH, supplementation with carbon and nitrogen sources were optimized to achieve the maximum production of both PG and Xyl of T. harzianum and T. virens using cantaloupe and watermelon rinds, respectively. The maximum production of PG and Xyl of T. harzianum and T. virens was recorded at 4–5 days of incubation, 50–66% moisture, temperature 28–35°C and pH 6–7. The influence of supplementary carbon and nitrogen sources was studied. For T. harzianum, lactose enhanced PG activity from 87 to 120 units/g solid, where starch and maltose enhanced Xyl activity from 40 to 55–60 units/g solid for T. virnes. Among the nitrogen sources, ammonium sulphate, ammonium nitrate, yeast extract and urea increased PG activity from 90 to 110–113 units/g solid for T. harzianum. Similarly, ammonium chloride, ammonium sulphate and yeast extract increased Xyl activity from 45 to 55–70 units/g solid for T. virens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azin, M., Morevej, R., and Zareh, D. 2007. Production of xylanase by Trichoderma longibrachiatum on a mixture of wheat bran and wheat straw: optimization of culture condition by Taguchi method. Enzyme Microb. Technol. 40, 801–805.

    Article  CAS  Google Scholar 

  • Botella, C., de Ory, I., Webb, C., Cantero, D., and Blandino, A. 2005. Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochem. Eng. J. 26, 100–106.

    Article  CAS  Google Scholar 

  • Botella, C., Diaz, A., de Ory, I., Webb, C., and Blandino, A. 2007. Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem. 42, 98–101.

    Article  CAS  Google Scholar 

  • Castilho, L.R., Medronho, R.A., and Alves, T.L.M. 2000. Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with Aspergillus niger. Bioresour. Technol. 71, 45–50.

    Article  CAS  Google Scholar 

  • Couri, S., Terzi, S., Pinto, G.S., Freitas, S.P., and da Costa, A.C.A. 2000. Hydrolytic enzyme production in solidstate fermentation by Aspergillus niger 3T5B8. Process Biochem. 36, 255–261.

    Article  CAS  Google Scholar 

  • Couto, S.R. and Sanroman, M.A. 2005. Application of solid-state fermentation to food industry — a review. J. Food Eng. 22, 211–219.

    Google Scholar 

  • Debing, J., Peijun, L., Stagnitti, F., Xianzhe, X., and Li, L. 2006. Pectinase production by solid fermentation from Aspergillus niger by a new prescription experiment. Ecotoxicol. Environ. Safety 64, 244–250.

    Article  PubMed  Google Scholar 

  • Delabona, P. da-S., Pirota, R.D.P.B., Codima, C.A., Tremacoldi, C.G., Rodrigues, A., and Farinas, C.S. 2013. Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: Biomass-degrading enzymes production and characterization. Ind. Crops Prod. 42, 236–242.

    Article  CAS  Google Scholar 

  • Farani de Souza, D., Marques de Souza, C.G., and Peralta, R.M. 2001. Effect of easily metabolizable sugars in the production of xylanase by Aspergillus tamarii in solid state fermentation. Process Biochem. 36, 835–838.

    Article  Google Scholar 

  • Gervais, P. and Molin, P. 2003. The role of the water in solid state fermentation. Biochem. Eng. J. 13, 85–101.

    Article  CAS  Google Scholar 

  • Gonzales, G.V., Torres, E.F., Aguilar, C.N., Gomez, S.J.R., Godinez, G.D., and Augur, C. 2003. Advantages of fungal enzyme production in solid-state over liquid fermentation systems. Biochem. Eng. J. 13, 157–167.

    Article  Google Scholar 

  • Heerd, D., Yegin, S., Tari, C., and Fernandez-Lahore, M. 2012. Pectinase enzyme-complex production by Aspergillus spp. In solid-state fermentation: A comparative study. Food Bioproduct Processing 90, 102–110.

    Article  CAS  Google Scholar 

  • Kumar, P. 1985. Watermelon-utilization of peel waste for pickle processing. Indian Food Packer. 39, 49–52.

    Google Scholar 

  • Lakshmi, G.S., Rao, C.S., Rao, R.S., Hobbs, P.J., and Prakasham, R.S. 2009. Enhanced production of xylanase by a newly isolated Aspergillus terreus under solid state fermentation using palm industrial waste: A statistical optimization. Biochem. Eng. J. 48, 51–57.

    Article  CAS  Google Scholar 

  • Lu, W., Li, D., and Wu, Y. 2003. Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid state fermentation by Aspergillus sulphurous. Enzyme Microb. Technol. 32, 305–311.

    Article  CAS  Google Scholar 

  • Madhuri, P. and Devi, K. 2003. Value addition to watermelon fruit waste. J. Food Sci. Technol. 40, 222–224.

    Google Scholar 

  • Mamma, D., Kourtoglou, E., and Christakopoulos, P. 2008. Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour. Technol. 99, 2373–2383.

    Article  PubMed  CAS  Google Scholar 

  • Martins, E.S., Silva, D., Da Silva, R., and Gomes, E. 2002. Solid-state production of thermostable pectinases from thermophilic Thermoascus urantiacus. Process Biochem. 37, 949–954.

    Article  CAS  Google Scholar 

  • Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal. Chem. 31, 426–429.

    Article  CAS  Google Scholar 

  • Pandey, A. 1991. Aspects of fermenter design for solid-state fermentations. Process Biochem. 26, 355–361.

    Article  CAS  Google Scholar 

  • Patil, S.R. and Dayanand, A. 2006. Optimization of process for the production of fungal pectinases from deseeded sunflower head in submerged and solid-state conditions. Bioresour. Technol. 97, 2340–2344.

    Article  PubMed  CAS  Google Scholar 

  • Pons, L. 2003. Exploring important medicinal uses for watermelon rinds. Available online at URL http://www.ars.usda.gov/is/pr/2003/030221.htm. (accessed 2006).

    Google Scholar 

  • Raimbault, M. 1998. General and microbiological aspects of solid substrate fermentation. Elec. J. Biotechnol. 1, 1–15.

    Google Scholar 

  • Roco, A. and Pérez, L.M. 2001. In vitro biocontrol activity of Trichoderma harzianum on Alternaria alternate in the presence of growth regulators. J. Biotechnol. 4, 68–73.

    Google Scholar 

  • Rodriguez-Fernández, D.E., Rodriguez-León, J.A., de Carvalho, J.C., Sturm, W., and Soccol C.R. 2011. The behavior of kinetic parameters in production of pectinaseand xylanase by solid-state fermentation. Bioresour. Technol. 102, 10657–10662.

    Article  PubMed  Google Scholar 

  • Senthilkumar, S.R., Ashokkumar, B., Raj, K.C., and Gunasekaran, P. 2005. Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresour. Technol. 96, 1380–1386.

    Article  PubMed  CAS  Google Scholar 

  • Seyis, I. and Aksoz, N. 2005. Xylanase production from Trichoderm harzianum 1073 D3 with alternative carbon and nitrogen sources. Food Technol. Biotechnol. 43, 37–40.

    CAS  Google Scholar 

  • Silva, D., Martins, E.S., Da Silva, R., and Gomes, E. 2002. Pectinase production by Penicillium viridicatum RFC3 by solid-state fermentation using agricultural wastes and agro-industrial by-products. Braz. J. Microbiol. 33, 318–324.

    CAS  Google Scholar 

  • Simonne, A., Carter, M., Fellers, R., Weese, J., Wei, C.I., Simonne, E., and Miller, M. 2002. Chemical, physical, and sensory characterization of watermelon rind pickles. J. Food Process Preserv. 26, 415–431.

    CAS  Google Scholar 

  • Singh, R., Kumar, J.C., and Nandpuri, K.S. 1975. A study on the influence of the structural chemical constituents of the skin of water melon (Citrullus lanatus Sch.) fruit on the incidence of its blossom-end-rot and cracking. Indian J. Horticult. 32, 98–101.

    Google Scholar 

  • Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K.M., Soccol, C.R., and Pandey, A. 2006. α-Amylases from microbial sources — An overview on recent developments. Food Technol. Biotechnol. 44, 173–184.

    CAS  Google Scholar 

  • Sukumaran, R.K., Singhania, R.R., Mathew, G.M., and Pandey, A. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energ. 34, 421–424.

    Article  CAS  Google Scholar 

  • Sun, X., Liu, Z., Qu, Y., and Li, X. 2008. The effect of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens. Appl. Biochem. Biotechnol. 146, 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Ustok, F.I., Canan Tari, C., and Gogus, N. 2007. Solid-state production of polygalacturonase by Aspergillus sojae ATCC 20235. J. Biotechnol. 127, 322–334.

    Article  PubMed  CAS  Google Scholar 

  • Yamane, Y., Fujita, J., Shimizu, R., Hiyoshi, A., Fukuda, H., Kizaki, Y., and Wakabayashi, S. 2002. Production of cellulose- and xylan-degrading enzymes by a koji mold, Aspergillus oryzae, and their contribution to the maceration of rice endosperm cell wall. J. Biosci. Bioeng. 93, 9–14.

    PubMed  CAS  Google Scholar 

  • Yang, X., Chen, H., Gao, H., and Li, Z. 2001. Bioconversion of corn straw by coupling ensiling and solid-state fermentation. Bioresour. Technol. 78, 277–280.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, Q.P., Wang, J.D., Zhang, H., and Qian, Z.M. 2005. Effect of temperature shift on production of xylanase by Aspergillus niger. Process Biochem. 40, 3255–3257.

    Article  CAS  Google Scholar 

  • Zhou, J.M., Ge, X.Y., and Zhang, W.G. 2011. Improvement of polygalacturonase production at high temperature by mixed culture of Aspergillus niger and Saccharomyces cerevisiae. Bioresour. Technol. 102, 10085–10088.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh A. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, S.A., Al-Malki, A.L., Khan, J.A. et al. Solid state production of polygalacturonase and xylanase by Trichoderma species using cantaloupe and watermelon rinds. J Microbiol. 51, 605–611 (2013). https://doi.org/10.1007/s12275-013-3016-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-3016-x

Keywords

Navigation