Skip to main content
Log in

Selection of a Streptomyces strain able to produce cell wall degrading enzymes and active against Sclerotinia sclerotiorum

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Control of plant pathogen Sclerotinia sclerotiorum is an ongoing challenge because of its wide host range and the persistence of its sclerotia in soil. Fungicides are the most commonly used method to control this fungus but these can have ecotoxicity impacts. Chitinolytic Streptomyces strains isolated from Brazilian tropical soils were capable of inhibiting S. sclerotiorum growth in vitro, offering new possibilities for integrated pest management and biocontrol, with a new approach to dealing with an old problem. Strain Streptomyces sp. 80 was capable of irreversibly inhibiting fungal growth. Compared to other strains, its crude enzymes had the highest chitinolytic levels when measured at 25°C and strongly inhibited sclerotia from S. sclerotiorum. It produced four hydrolytic enzymes involved in fungal cell wall degradation when cultured in presence of the fungal mycelium. The best production, obtained after three days, was 0.75 U/ml for exochitinase, 0.9 U/ml for endochitinase, 0.16 U/ml for glucanase, and 1.78 U/ml for peptidase. Zymogram analysis confirmed two hydrolytic bands of chitinolytic activity with apparent molecular masses of 45.8 and 206.8 kDa. One glucanase activity with an apparent molecular mass of 55 kDa was also recorded, as well as seven bands of peptidase activity with apparent molecular masses ranging from 15.5 to 108.4 kDa. Differential interference contrast microscopy also showed alterations of hyphal morphology after co-culture. Streptomyces sp. 80 seems to be promising as a biocontrol agent against S. sclerotiorum, contributing to the development of new methods for controlling plant diseases and reducing the negative impact of using fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, P.B. and Ayers, W.A. 1979. Ecology of Sclerotinia species. Phytopathology 69, 896–899.

    Article  Google Scholar 

  • Bae, Y.S. and Knudsen, G.R. 2007. Effect of sclerotial distribution pattern of Sclerotinia sclerotiorum on biocontrol efficacy of Trichoderma harzianum. Appl. Soil Ecol. 35, 21–24.

    Article  Google Scholar 

  • Bara, M.T.F., Lima, A.L., and Ulhoa, C.J. 2003. Purification and characterization of an exo-beta-1,3-glucanase produced by Trichoderma asperellum. FEMS Microbiol. Lett. 219, 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Buroker-Kilgore, M. and Wang, K.K. 1993. A Coomassie brilliant blue G-250-based colorimetric assay for measuring activity of calpain and other proteases. Anal. Biochem. 208, 387–392.

    Article  PubMed  CAS  Google Scholar 

  • Cole, J., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R., Kulam-Syed-Mohideen, A., McGarrell, D., Marsh, T., Garrity, G., and Tiedje, J. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, 141–145.

    Article  Google Scholar 

  • Dastager, S.G., Kim, C.J., Lee, J.C., Agasar, D., Park, D.J., and Li, W.J. 2008. Streptomyces deccanensis sp. nov., an alkaliphilic species isolated from soil. Int. J. Syst. Evol. Microbiol. 58, 1089–1093.

    Article  PubMed  CAS  Google Scholar 

  • De Marco, J.L. and Felix, C.R. 2007. Purification and characterization of a β-glucanase produced by Trichoderma harzianum showing biocontrol potential. Braz. Arch. Biol. Technol. 50, 21–29.

    Article  Google Scholar 

  • De Marco, J.L., Valadares-Inglis, M.C., and Felix, C.R. 2003. Production of hydrolytic enzymes by Trichoderma isolates with antagonistic activity against Crinipellis perniciosa, the causal agent of witches’ broom of cocoa. Braz. J. Microbiol. 34, 33–38.

    Article  Google Scholar 

  • Dunne, C., Crowley, J.J., Moenne-Loccoz, Y., Dowling, D.N., De Bruijn, F.J., and O’Gara, F. 1997. Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143, 3921–3931.

    Article  CAS  Google Scholar 

  • El-Tarabily, K.A. 2006. Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall-degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can. J. Bot. 84, 211–222.

    Article  CAS  Google Scholar 

  • El-Tarabily, K.A., Nassar, A.H., Hardy, G.E.S.J., and Sivasithamparam, K. 2009. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J. Appl. Microbiol. 106, 13–26.

    Article  PubMed  CAS  Google Scholar 

  • El-Tarabily, K.A., Soliman, M.H., Nassar, A.H., Al-Hassani, H.A., Sivasithamparam, K., McKenna, F., and Hardy, G.E.S.J. 2000. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol. 49, 573–583.

    Article  Google Scholar 

  • Ferraz, L.C.L. and Café Filho, A.C. 1998. Meios de cultura de fatores culturais para a produ..o de escleródios e apotécio de Sclerotinia sclerotiorum in vitro. Fitopatol. Bras. 23, 364–369.

    Google Scholar 

  • Gomes, R.C., Semêdo, L.T.A.S., Linhares, A.A., Guimarães, A.C.C., Alviano, C.S., Linhares, L.F., and Coelho, R.R.R. 1999. Efficiency of the dispersion and differential centrifugation technique in the isolation of chitinolytic actinomycetes from soil. World J. Microbiol. Biotechnol. 15, 47–50.

    Article  Google Scholar 

  • Gomes, R.C., Semêdo, L.T., Soares, R.M.A., Alviano, C.S., Linhares, L.F., and Coelho, R.R.R. 2000. Chitinolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Lett. Appl. Microbiol. 30, 146–150.

    Article  PubMed  CAS  Google Scholar 

  • Gomes, R.C., Sêmedo, L.T.A.S., Soares, R.M.A., Linhares, L.F., Ulhoa, C.J., Alviano, C.S., and Coelho, R.R.R. 2001. Purification of a thermostable endochitinase from Streptomyces RC1071 isolated from a cerrado soil and its antagonism against phytopathogenic fungi. J. Appl. Microbiol. 90, 653–661.

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan, S., Pande, S., Sharma, M., Humayun, P., Kiran, B.K., Sandeep, D., Vidya, M.S., Deepthi, K., and Rupela, O. 2011. Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Protection 30, 1070–1078.

    Article  CAS  Google Scholar 

  • Gracia-Garza, J.A., Reeleder, R.D., and Paulitz, T.C. 1997. Degradation of sclerotia of Sclerotinia sclerotiorum by fungus gnats (Bradysia coprophila) and the biocontrol fungi Trichoderma spp. Soil Biol. Biochem. 29, 123–129.

    Article  CAS  Google Scholar 

  • Gupta, C., Kumar, B., Dubey, R., and Maheshwari, D. 2006. Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa against Sclerotinia sclerotiorum causing stem rot of peanut. Biocontrol 51, 821–835.

    Article  CAS  Google Scholar 

  • Han, Y., Yang, B., Zhang, F., Miao, X., and Li, Z. 2009. Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with South China Sea sponge Craniella australiensis. Mar. Biotechnol. 11, 132–140.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Sakamoto, M., and Benno, Y. 2004. Evaluation of three different forward primers by terminal restriction fragment length polymorphism analysis for determination of fecal Bifidobacterium spp. in healthy subjects. Microbiol. Immunol. 48, 1–6.

    PubMed  CAS  Google Scholar 

  • Hegedus, D.D. and Rimmer, S.R. 2005. Sclerotinia sclerotiorum: When “to be or not to be” a pathogen? FEMS Microbiol. Lett. 251, 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Heussen, C. and Dowdle, E.B. 1980. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem. 102, 196–202.

    Article  PubMed  CAS  Google Scholar 

  • Hou, X., Boyetchko, S.M., Brkic, M., Olson, D., Ross, A., and Hegedus, D. 2006. Characterization of the anti-fungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum. Appl. Microbiol. Biotechnol. 72, 644–653.

    Article  PubMed  CAS  Google Scholar 

  • Inbar, J., Menendez, A.N.A., and Chet, I. 1996. Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biol. Biochem. 28, 757–763.

    Article  CAS  Google Scholar 

  • Jones, D. 1970. Ultrastructure and composition of the cell walls of Sclerotinia sclerotiorum. Transact. Brit. Mycol. Soc. 54, 351–360.

    Article  CAS  Google Scholar 

  • Jones, B.L., Fontanini, D., Jarvinen, M., and Pekkarinen, A. 1998. Simplified endoproteinase assays using gelatin or azogelatin. Anal. Biochem. 263, 214–220.

    Article  PubMed  CAS  Google Scholar 

  • Junior, M.L. and Abreu, M.S.D. 1994. Inibição do crescimento micelial de Sclerotinia sclerotiorum por metabólitos voláteis produzidos por alguns antagonistas em diferentes temperaturas e pH. Cienc. Agrotecnol. 24, 3–8.

    Google Scholar 

  • Kamensky, M., Ovadis, M., Chet, I., and Chernin, L. 2003. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol. Biochem. 35, 323–331.

    Article  CAS  Google Scholar 

  • Kurtzman, C.P. and Robnett, C.J. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73, 331–371.

    Article  PubMed  CAS  Google Scholar 

  • Leelasuphakul, W., Sivanunsakul, P., and Phongpaichit, S. 2006. Purification, characterization and synergistic activity of β-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzyme Microb. Technol. 38, 990–997.

    Article  CAS  Google Scholar 

  • Loffler, F.E., Sun, Q., Li, J., and Tiedje, J.M. 2000. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl. Environ. Microbiol. 66, 1369–1374.

    Article  PubMed  CAS  Google Scholar 

  • Monteiro, V.N. and Ulhoa, C.J. 2006. Biochemical characterization of a β-1,3-glucanase from Trichoderma koningii induced by cell wall of Rhizoctonia solani. Curr. Microbiol. 52, 92–96.

    Article  PubMed  CAS  Google Scholar 

  • Napoleão, R., Nasser, L., Lopes, C., and Café Filho, A. 2006. Neon-S, novo meio para detecção de Sclerotinia sclerotiorum em sementes. Summ. Phytopathol. 32, 180–182.

    Google Scholar 

  • Pan, S.Q., Ye, X.S., and Kuć, J. 1989. Direct detection of beta-1,3-glucanase isozymes on polyacrylamide electrophoresis and isoelectrofocusing gels. Anal. Biochem. 182, 136–140.

    Article  PubMed  CAS  Google Scholar 

  • Prapagdee, B., Kuekulvong, C., and Mongkolsuk, S. 2008. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int. J. Biol. Sci. 4, 330–337.

    Article  PubMed  CAS  Google Scholar 

  • Shirling, E.B. and Gottlieb, D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16, 313–340.

    Article  Google Scholar 

  • Souza, R.F., Coelho, R.R.R., Macrae, A., Soares, R.M.A., Nery, D.C.M., Semêdo, L.T.A.S., Alviano, C.S., and Gomes, R.C. 2008. Streptomyces lunalinharesii sp. nov., a chitinolytic streptomycete isolated from cerrado soil in Brazil. Int. J. Syst. Evol. Microbiol. 58, 2774–2778.

    Article  PubMed  Google Scholar 

  • Souza, R.F., Gomes, R.C., Coelho, R.R.R., Alviano, C.S., and Soares, R.M.A. 2003. Purification and characterization of an endochitinase produced by Colletotrichum gloeosporioides. FEMS Microbiol. Lett. 222, 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Spiro, R.G. 1966. The Nelson-Somogyi copper reduction method. Methods Enzymol. 8, 3–26.

    Article  CAS  Google Scholar 

  • Sunna, A. and Antranikian, G. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39–67.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, E.D. and Papavizas, G.C. 1991. Evaluation of oospore hyperparasites for the control of phytophthora crown rot of pepper. J. Phytopathol. 131, 33–39.

    Article  Google Scholar 

  • Tahtamouni, M.E.W., Hameed, K.M., and Saadoun, I.M. 2006. Biological control of Sclerotinia sclerotiorum using indigenous chitinolytic actinomycetes in Jordan. Plant Pathol. J. 22, 107–114.

    Article  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Trudel, J. and Asselin, A. 1989. Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 178, 362–366.

    Article  PubMed  CAS  Google Scholar 

  • Valois, D., Fayad, K., Barasubiye, T., Garon, M., Dery, C., Brzezinski, R., and Beaulieu, C. 1996. Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl. Environ. Microbiol. 62, 1630–1635.

    PubMed  CAS  Google Scholar 

  • Young, C.S., Clarkson, J.P., Smith, J.A., Watling, M., Phelps, K., and Whipps, J.M. 2004. Environmental conditions influencing Sclerotinia sclerotiorum infection and disease development in lettuce. Plant Pathol. 53, 387–397.

    Article  Google Scholar 

  • Yuan, W.M. and Crawford, D.L. 1995. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl. Environ. Microbiol. 61, 3119–3128.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adriana Fróes or Rosalie Coelho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fróes, A., Macrae, A., Rosa, J. et al. Selection of a Streptomyces strain able to produce cell wall degrading enzymes and active against Sclerotinia sclerotiorum . J Microbiol. 50, 798–806 (2012). https://doi.org/10.1007/s12275-012-2060-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-2060-2

Keywords

Navigation