Skip to main content
Log in

Phenotypes associated with Saccharomyces cerevisiae Hug1 protein, a putative negative regulator of dNTP Levels, reveal similarities and differences with sequence-related dif1

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae Hugl is a small protein of unknown function that is highly inducible following replication stress and DNA damage. Its deletion suppresses the lethality of deletion of checkpoint kinase Mecl. Although DNA damage responses were largely normal in the HUG1 deletion mutant, we found enhanced resistance towards heat in logarithmic phase. In response to simultaneous carbon and replication stress, overall growth delay and less pseudohyphal filament formation were evident. These novel phenotypes are shared with deletion mutants of the negative regulators of ribonucleotide reductase, Difl and Smll. Microarray analysis showed the influence of Hugl on the expression of a large number of transcripts, including stress-related transcripts. Elevated dNTP levels in hugl Δ cells may result in a stress response reflected by the observed phenotypes and transcript profiles. However, in contrast to a deletion of structurally related Difl, Rnr2-Rnr4 subcellular localization is not grossly altered in a Hugl deletion mutant. Thus, although Hugl appears to be derived from the Rnr2-Rnr4 binding region of Difl, its mechanism of action must be independent of determining the localization of Rnr2-Rnr4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basrai, M.A., V.E. Velculescu, K.W. Kinzler, and P. Hieter. 1999. NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 7041–7049.

    PubMed  CAS  Google Scholar 

  • Benton, M.G., N.R. Glasser, and S.P. Palecek. 2007. The utilization of a Saccharomyces cerevisiae HUG1P-GFP promoter-reporter construct for the selective detection of DNA damage. Mutat. Res. 633, 21–34.

    PubMed  CAS  Google Scholar 

  • Carroll, A.S., A.C. Bishop, J.L. DeRisi, K.M. Shokat, and E.K. O’shea. 2001. Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc. Natl. Acad. Sci. USA 98, 12578–12583.

    Article  PubMed  CAS  Google Scholar 

  • Chabes, A., B. Georgieva, V. Domkin, X. Zhao, R. Rothstein, and L. Thelander. 2003. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell. 112, 391–401.

    Article  PubMed  CAS  Google Scholar 

  • Friedberg, E.C., G.C. Walker, W. Siede, R.D. Wood, R.A. Schultz, and T. Ellenberger. 2006. DNA Repair and Mutagenesis, 2nd (ed.). American Society of Microbiology Press, Washington, D.C., USA.

    Google Scholar 

  • Gasch, A.P. and M. Werner-Washburne. 2002. The genomics of yeast responses to environmental stress and starvation. Funct. Integr. Genomics 2, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Huang, D., H. Friesen, and B. Andrews. 2007. Pho85, a multifunctional cyclin-dependent protein kinase in budding yeast. Mol. Microbiol. 66, 303–314.

    Article  PubMed  CAS  Google Scholar 

  • Huang, M., Z. Zhou, and S.J. Elledge. 1998. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell. 94, 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y.W. and C.M. Kang. 2003. Induction of S. cerevisiae filamentous differentiation by slowed DNA synthesis involves Mec1, Rad53 and Swe1 checkpoint proteins. Mol. Biol. Cell. 14, 5116–5124.

    Article  PubMed  CAS  Google Scholar 

  • Kastan, M.B. and J. Bartek. 2004. Cell-cycle checkpoints and cancer. Nature 432, 316–323.

    Article  PubMed  CAS  Google Scholar 

  • Lazzaro, F., M. Giannattasio, F. Puddu, M. Granata, A. Pellicioli, P. Plevani, and M. Muzi-Falconi. 2009. Checkpoint mechanisms at the intersection between DNA damage and repair. DNA Repair (Amst). 8, 1055–1067.

    Article  CAS  Google Scholar 

  • Lee, Y.D. and S.J. Elledge. 2006. Control of ribonucleotide reductase localization through an anchoring mechanism involving Wtm1. Genes Dev. 20, 334–344.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.W., B.J. Kim, H.K. Choi, M.J. Ryu, S.B. Kim, K.M. Kang, E.J. Cho, H.D. Youn, W.K. Huh, and S.T. Kim. 2007. Global protein expression profiling of budding yeast in response to DNA damage. Yeast 24, 145–154.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.D., J. Wang, J. Stubbe, and S.J. Elledge. 2008. Dif1 is a DNA-damage-regulated facilitator of nuclear import for ribonucleotide reductase. Mol. Cell. 32, 70–80.

    Article  PubMed  CAS  Google Scholar 

  • Lussier, M., A.M. White, J. Sheraton, T. di Paolo, J. Treadwell, S.B. Southard, C.I. Horenstein, and et al. 1997. Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147, 435–450.

    PubMed  CAS  Google Scholar 

  • Mizukami-Murata, S., H. Iwahashi, S. Kimura, K. Nojima, Y. Sakurai, T. Saitou, N. Fujii, and et al. 2010. Genome-wide expression changes in Saccharomyces cerevisiae in response to high-LET ionizing radiation. Appl. Biochem. Biotechnol. 162, 855–870.

    Article  PubMed  CAS  Google Scholar 

  • Nestoras, K., A.H. Mohammed, A.S. Schreurs, O. Fleck, A.T. Watson, M. Poitelea, C. O’shea, and et al. 2010. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms. Genes Dev. 24, 1145–1159.

    Article  PubMed  CAS  Google Scholar 

  • Nyberg, K.A., R.J. Michelson, C.W. Putnam, and T.A. Weinert. 2002. Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet. 36, 617–656.

    Article  PubMed  CAS  Google Scholar 

  • Pabla, R., V. Pawar, H. Zhang, and W. Siede. 2006. Characterization of checkpoint responses to DNA damage in Saccharomyces cerevisiae: basic protocols. Meth. Enzymol. 409, 101–117.

    Article  PubMed  CAS  Google Scholar 

  • Ptacek, J., G. Devgan, G. Michaud, H. Zhu, X. Zhu, J. Fasolo, H. Guo, and et al. 2005. Global analysis of protein phosphorylation in yeast. Nature 438, 679–684.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, R. 1989. Targeting, disruption, replacement, and allelic rescue: integrative DNA transformation in yeast. Meth. Enzymol. 194, 281–301.

    Article  Google Scholar 

  • Wu, X. and M. Huang. 2008. Dif1 controls subcellular localization of ribonucleotide reductase by mediating nuclear import of the R2 subunit. Mol. Cell. Biol. 28, 7156–7167.

    Article  PubMed  CAS  Google Scholar 

  • Yao, R., Z. Zhang, X. An, B. Bucci, D.L. Perlstein, J. Stubbe, and M. Huang. 2003. Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways. Genetics 100, 6628–6633.

    CAS  Google Scholar 

  • Zaim, J., E. Speina, and A.M. Kierzek. 2005. Identification of new genes regulated by the Crt1 transcription factor, an effector of the DNA damage checkpoint pathway in Saccharomyces cerevisiae. J. Biol. Chem. 280, 28–37.

    PubMed  CAS  Google Scholar 

  • Zhao, X., A. Chabes, V. Domkin, L. Thelander, and R. Rothstein. 2001. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J. 20, 3544–3553.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., B. Georgieva, A. Chabes, V. Domkin, J.H. Ippel, J. Schleucher, S. Wijmenga, L. Thelander, and R. Rothstein. 2000. Mutational and structural analyses of the ribonucleotide reductase inhibitor Sml1 define its Rnr1 interaction domain whose inactivation allows suppression of mec1 and rad53 lethality. Mol. Cell. Biol. 20, 9076–9083.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X. and R. Rothstein. 2002. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc. Natl. Acad. Sci. USA 99, 3746–3751.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunmi Kim.

Additional information

Supplemental material for this article may be found at http://www.springer.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E., Siede, W. Phenotypes associated with Saccharomyces cerevisiae Hug1 protein, a putative negative regulator of dNTP Levels, reveal similarities and differences with sequence-related dif1. J Microbiol. 49, 78–85 (2011). https://doi.org/10.1007/s12275-011-0200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0200-8

Keywords

Navigation