Skip to main content
Log in

Magnetic-field-assisted triboelectric nanogenerator for harvesting multi-directional wave energy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ocean wave energy is a significant and promising source of renewable energy. However, the energy harvesting is challenging due to the multi-directional nature of waves. This paper proposes a magnetic-field-assisted triboelectric nanogenerator (MFA-TENG) for harvesting multi-directional wave energy. By incorporating a magnetic field, the planar motion of the pendulum is converted into spatial motion, increasing the triggering of multilayered TENG (M-TENG) and enhancing the output energy of the MFA-TENG. Experimental results demonstrate that the output energy of the MFA-TENG is increased by 73% by utilizing the magnetic field. Moreover, a spring model based on the origami-structured M-TENG is established to analyze the effect of different equivalent stiffnesses on the performance of the M-TENG, aiming to obtain optimal output performance. The results showcase the impressive output performance of the M-TENG, generating outputs of 250 V, 18 µA, and 255 nC. Furthermore, the proposed MFA-TENG effectively harvests multi-directional wave energy under water-wave driven conditions. This study significantly enhances the ability of the MFA-TENG to harvest multi-directional wave energy and presents a promising approach for self-powered marine monitoring in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borthwick, A. G. L. Marine renewable energy seascape. Engineering 2016, 2, 69–78.

    Article  Google Scholar 

  2. He, F.; Liu, Y. B.; Pan, J. P.; Ye, X. H.; Jiao, P. C. Advanced ocean wave energy harvesting: Current progress and future trends. J. Zhejiang Univ. Sci. A 2023, 24, 91–108.

    Article  Google Scholar 

  3. Val, D. V. Reliability of marine energy converters. Energies 2023, 16, 3387.

    Article  Google Scholar 

  4. Rusu, E. Special issue “advances and challenges in harvesting ocean energy”. Energies 2021, 14, 4543.

    Article  Google Scholar 

  5. Khan, N.; Kalair, A.; Abas, N.; Haider, A. Review of ocean tidal, wave and thermal energy technologies. Renew. Sustain. Energy Rev. 2017, 72, 590–604.

    Article  Google Scholar 

  6. Khan, M. Z. A.; Khan, H. A.; Aziz, M. Harvesting energy from ocean: Technologies and perspectives. Energies 2022, 15, 3456.

    Article  CAS  Google Scholar 

  7. Pan, X. G.; Ling, P.; Bao, H. H.; He, W.; Li, Q. C.; Yan, B. Tumbler-inspired electromagnetic generator for low-frequency ocean wave energy harvesting. Energy Convers. Manage. 2023, 294, 117569.

    Article  Google Scholar 

  8. Khan, U.; Kim, S. W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano 2016, 10, 6429–6432.

    Article  CAS  PubMed  Google Scholar 

  9. Dharmasena, R. D. I. G.; Jayawardena, K. D. G. I.; Mills, C. A.; Deane, J. H. B.; Anguita, J. V.; Dorey, R. A.; Silva, S. R. P. Triboelectric nanogenerators: Providing a fundamental framework. Energy Environ. Sci. 2017, 10, 1801–1811.

    Article  Google Scholar 

  10. Chen, Y. R.; Zhang, H.; Xu, C. H.; Deng, L.; Yang, Q. L.; Zhang, H. T.; Xing, J. C.; Xie, L. Q. Characteristic of solid-ferrofluid triboelectric nanogenerator for ultra-low-frequency vibration energy harvesting. Nano Energy 2023, 111, 108395.

    Article  CAS  Google Scholar 

  11. Cao, Y. X.; Su, E. M.; Sun, Y. S.; Wang, Z. L.; Cao, L. N. Y. A rolling-bead triboelectric nanogenerator for harvesting omnidirectional wind-induced energy toward shelter forests monitoring. Small 2024, 20, 2307119.

    Article  CAS  Google Scholar 

  12. Xu, Z. Q.; Chen, L. T.; Zhang, Z.; Han, J. J.; Chen, P. F.; Hong, Z. Y.; Jiang, T.; Wang, Z. L. Durable roller-based swing-structured triboelectric nanogenerator for water wave energy harvesting. Small, in press, https://doi.org/10.1002/smll.202307288.

  13. Feng, L. N.; Cao, X.; Wang, Z. L.; Zhang, L. Q. A transparent and degradable bacterial cellulose-based film for triboelectric nanogenerator: Efficient biomechanical energy harvesting and human health monitoring. Nano Energy 2024, 120, 109068.

    Article  CAS  Google Scholar 

  14. Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

    Article  Google Scholar 

  15. Lei, H.; Chen, Y. F.; Gao, Z. Q.; Wen, Z.; Sun, X. H. Advances in self-powered triboelectric pressure sensors. J. Mater. Chem. A 2021, 9, 20100–20130.

    Article  CAS  Google Scholar 

  16. Xiong, X. Y.; Liang, J.; Wu, W. Principle and recent progress of triboelectric pressure sensors for wearable applications. Nano Energy 2023, 113, 108542.

    Article  CAS  Google Scholar 

  17. Kim, M. P. Multilayered functional triboelectric polymers for self-powered wearable applications: A review. Micromachines 2023, 14, 1640.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Khandelwal, G.; Maria Joseph Raj, N. P.; Kim, S. J. Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today 2020, 33, 100882.

    Article  CAS  Google Scholar 

  19. Shen, F.; Li, Z. J.; Guo, H. H.; Yang, Z. B.; Wu, H.; Wang, M.; Luo, J.; Xie, S. R.; Peng, Y.; Pu, H. Y. Recent advances towards ocean energy harvesting and self-powered applications based on triboelectric nanogenerators. Adv. Elect. Mater. 2021, 7, 2100277.

    Article  CAS  Google Scholar 

  20. Zhang, C. G.; Hao, Y. J.; Yang, J. Y.; Su, W.; Zhang, H. K.; Wang, J.; Wang, Z. L.; Li, X. H. Recent advances in triboelectric nanogenerators for marine exploitation. Adv. Energy Mater. 2023, 13, 2300387.

    Article  CAS  Google Scholar 

  21. Jiang, T.; Yao, Y. Y.; Xu, L.; Zhang, L. M.; Xiao, T. X.; Wang, Z. L. Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 2017, 31, 560–567.

    Article  CAS  Google Scholar 

  22. Lei, R.; Zhai, H.; Nie, J. H.; Zhong, W.; Bai, Y.; Liang, X.; Xu, L.; Jiang, T.; Chen, X. Y.; Wang, Z. L. Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 2019, 4, 1800514.

    Article  Google Scholar 

  23. Xiao, T. X.; Liang, X.; Jiang, T.; Xu, L.; Shao, J. J.; Nie, J. H.; Bai, Y.; Zhong, W.; Wang, Z. L. Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 2018, 28, 1802634.

    Article  Google Scholar 

  24. Liang, X.; Liu, Z. R.; Feng, Y. W.; Han, J. J.; Li, L. L.; An, J.; Chen, P. F.; Jiang, T.; Wang, Z. L. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 2021, 83, 105836.

    Article  CAS  Google Scholar 

  25. Xu, L.; Jiang, T.; Lin, P.; Shao, J. J.; He, C.; Zhong, W.; Chen, X. Y.; Wang, Z. L. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 2018, 12, 1849–1858.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, X. D.; Xu, L.; Lin, P.; Zhong, W.; Bai, Y.; Luo, J. J.; Chen, J.; Wang, Z. L. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 2019, 60, 404–412.

    Article  CAS  Google Scholar 

  27. Cheng, P.; Guo, H. Y.; Wen, Z.; Zhang, C. L.; Yin, X.; Li, X. Y.; Liu, D.; Song, W. X.; Sun, X. H.; Wang, J. et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 2019, 57, 432–439.

    Article  CAS  Google Scholar 

  28. Xia, K.; Xu, Z.; Hong, Y.; Wang, L. A free-floating structure triboelectric nanogenerator based on natural wool ball for offshore wind turbine environmental monitoring. Mater. Today Sustain. 2023, 24, 100467.

    Article  Google Scholar 

  29. Liang, X.; Jiang, T.; Liu, G. X.; Feng, Y. W.; Zhang, C.; Wang, Z. L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285.

    Article  Google Scholar 

  30. Ren, Z. W.; Liang, X.; Liu, D.; Li, X. J.; Ping, J. F.; Wang, Z. M.; Wang, Z. L. Water-wave driven route avoidance warning system for wireless ocean navigation. Adv. Energy Mater. 2021, 11, 2101116.

    Article  CAS  Google Scholar 

  31. Zhang, C. G.; Zhou, L. L.; Cheng, P.; Liu, D.; Zhang, C. L.; Li, X. Y.; Li, S. X.; Wang, J.; Wang, Z. L. Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Adv. Energy Mater. 2021, 11, 2003616.

    Article  CAS  Google Scholar 

  32. Wen, H. G.; Yang, P. Y.; Liu, G. L.; Xu, S. X.; Yao, H. L.; Li, W. T.; Qu, H.; Ding, J. J.; Li, J. Y.; Wan, L. Y. Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedom. Nano Energy 2022, 93, 106796.

    Article  CAS  Google Scholar 

  33. Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064.

    Article  CAS  Google Scholar 

  34. Lin, Z. M.; Zhang, B. B.; Xie, Y. Y.; Wu, Z. Y.; Yang, J.; Wang, Z. L. Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency. Adv. Funct. Mater. 2021, 31, 2105237.

    Article  CAS  Google Scholar 

  35. Zhang, C. G.; Yuan, W.; Zhang, B. F.; Yang, O.; Liu, Y. B.; He, L. X.; Wang, J.; Wang, Z. L. High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater. 2022, 32, 2111775.

    Article  CAS  Google Scholar 

  36. Zhang, C. G.; Yuan, W.; Zhang, B. F.; Yang, J. Y.; Hu, Y. X.; He, L. X.; Zhao, X. J.; Li, X. H.; Wang, Z. L.; Wang, J. A rotating triboelectric nanogenerator driven by bidirectional swing for water wave energy harvesting. Small 2023, 19, 2304412.

    Article  CAS  Google Scholar 

  37. Pang, H.; Feng, Y. W.; An, J.; Chen, P. F.; Han, J. J.; Jiang, T.; Wang, Z. L. Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Funct. Mater. 2021, 31, 2106398.

    Article  CAS  Google Scholar 

  38. Sun, Y. G.; Zheng, F. Y.; Wei, X. L.; Shi, Y. P.; Li, R. N.; Wang, B. C.; Wang, L. F.; Wu, Z. Y.; Wang, Z. L. Pendular-translational hybrid nanogenerator harvesting water wave energy. ACS Appl. Mater. Interfaces 2022, 14, 15187–15194.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, T. Pendulum-based vibration energy harvesting: Mechanisms, transducer integration, and applications. Energy Convers. Manage. 2023, 276, 116469.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Project from Minister of Science and Technology (Nos. 2021YFA1201604 and 2021YFA1201601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianming Wen, Zhong Lin Wang or Tinghai Cheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, M., Wang, J., Zhao, D. et al. Magnetic-field-assisted triboelectric nanogenerator for harvesting multi-directional wave energy. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6680-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6680-8

Keywords

Navigation