Skip to main content
Log in

Simultaneous improving luminescence intensity and stability of CsPbBr3:SCN@Eu/Zr-Uio-66-NH2 with tunable emissions from blue to green and applications in indoor photovoltaics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The construction of stable and efficient materials that emit blue and green light remains a challenge. Among the blue light materials reported, metal-organic framework (MOF) materials are rarely reported as blue phosphors due to their weak luminescence intensity. Based on the construction of CsPbBr3@MOF (CPB@MOF), an innovative idea was proposed to simultaneously enhance the green luminescence of CPB and the blue luminescence of MOF through the interaction between CPB and MOF for the first time. As expected, the blue luminescence from CPB:7%SCN@0.5%MOF:Eu as well as the green luminescence from 5%CPB:7%SCN@MOF:Eu was sufficient to construct high-performance light-emitting diode (LED) devices and further excite solar cells to generate stable photoelectric signals. The white LED (WLED) device with excellent color quality (color rendering index (CRI) = 96.2) and correlated color temperature (CCT = 9688 K) can be constructed by using the obtained blue-emitting CPB:7%SCN@0.5%MOF:Eu, green-emitting 5%CPB:7%SCN@MOF:Eu, and red-emitting PPB:30%Mn2+. The density functional theory (DFT) theoretical calculation results indicate that the p orbital of Pb plays the major role in the conduction band, and the p orbital of Br plays the major role in the valance band of CPB and CPB:SCN. While the p orbital of O plays the major role in both the conduction band and valance band of MOF. The heat capacity of CPB and CPB:SCN separately reaches the Dulong–Petit limit at 200 and 400 K, indicating that the thermal stability of CsPbBr3 increases after SCN doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park, S. J.; Song, S. H.; Kim, S. S.; Song, J. K. Charge modulation layer and wide-color tunability in a QD-LED with multiemission layers. Small 2021, 17, 2007397.

    Article  CAS  Google Scholar 

  2. Zhu, K.; Cheng, Z. K.; Rangan, S.; Cotlet, M.; Du, J. B.; Kasaei, L.; Teat, S. J.; Liu, W.; Chen, Y. F.; Feldman, L. C. et al. A new type of hybrid copper iodide as nontoxic and ultrastable LED emissive layer material. ACS Energy Lett. 2021, 6, 2565–2574.

    Article  CAS  Google Scholar 

  3. Joos, J. J.; Van Der Heggen, D.; Martin, L. I. D. J.; Amidani, L.; Smet, P. F.; Barandiarán, Z.; Seijo, L. Broadband infrared LEDs based on europium-to-terbium charge transfer luminescence. Nat. Commun. 2020, 11, 3647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang, M. W.; Hu, Z. H.; Ono, L. K.; Qi, Y. B. CsPbBrxI3−x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes. Nano Res. 2021, 14, 191–197.

    Article  CAS  Google Scholar 

  5. Marin, J. F. G.; Unuchek, D.; Sun, Z.; Cheon, C. Y.; Tagarelli, F.; Watanabe, K.; Taniguchi, T.; Kis, A. Room- temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED. Nat. Commun. 2022, 13, 4884.

    Article  Google Scholar 

  6. Mao, P.; Liu, C. X.; Li, X. Y.; Liu, M. X.; Chen, Q.; Han, M.; Maier, S. A.; Sargent, E. H.; Zhang, S. Single-step- fabricated disordered metasurfaces for enhanced light extraction from LEDs. Light Sci. Appl. 2021, 10, 180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, C. X.; Wang, S.; Li, X. M.; Yuan, M. J.; Turyanska, L.; Yang, X. Y. Core/shell perovskite nanocrystals: Synthesis of highly efficient and environmentally stable FAPbBr3/CsPbBr3 for LED applications. Adv. Funct. Mater. 2020, 30, 1910582.

    Article  CAS  Google Scholar 

  8. Chen, D. Z.; Ko, P. K.; Li, C. H. A.; Zou, B. S.; Geng, P.; Guo, L.; Halpert, J. E. Amino acid-passivated pure red CsPbI3 quantum dot LEDs. ACS Energy Lett. 2023, 8, 410–416.

    Article  CAS  Google Scholar 

  9. Xu, W.; Cai, Z. X.; Li, F. M.; Dong, J.; Wang, Y. R.; Jiang, Y. Q.; Chen, X. Embedding lead halide perovskite quantum dots in carboxybenzene microcrystals improves stability. Nano Res. 2017, 10, 2692–2698.

    Article  CAS  Google Scholar 

  10. Yan, F. Y.; Jiang, Y. X.; Sun, X. D.; Wei, J. F.; Chen, L.; Zhang, Y. Y. Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Res. 2020, 13, 52–60.

    Article  CAS  Google Scholar 

  11. Lee, Y. H.; Shabbir, I.; Yoo, K. H.; Kim, T. W. Significant enhancement of output performance of piezoelectric nanogenerators based on CsPbBr3 quantum dots-NOA63 nanocomposites. Nano Energy 2021, 85, 105975.

    Article  CAS  Google Scholar 

  12. Feng, J. Y.; Han, X. P.; Huang, H. T.; Meng, Q. X.; Zhu, Z.; Yu, T.; Li, Z. S.; Zou, Z. G. Curing the fundamental issue of impurity phases in two-step solution-processed CsPbBr3 perovskite films. Sci. Bull. 2020, 65, 726–737.

    Article  CAS  Google Scholar 

  13. Kim, H.; Bae, S. R.; Lee, T. H.; Lee, H.; Kang, H.; Park, S.; Jang, H. W.; Kim, S. Y. Enhanced optical properties and stability of CsPbBr3 nanocrystals through nickel doping. Adv. Funct. Mater. 2021, 31, 2102770.

    Article  CAS  Google Scholar 

  14. Iaru, C. M.; Brodu, A.; Van Hoof, N. J. J.; Ter Huurne, S. E. T.; Buhot, J.; Montanarella, F.; Buhbut, S.; Christianen, P. C. M.; Vanmaekelbergh, D.; De Mello Donega, C. et al. Fröhlich interaction dominated by a single phonon mode in CsPbBr3. Nat. Commun. 2021, 12, 5844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin, W. X.; Li, M. K.; Dong, W.; Luo, Z.; Li, Y. X.; Qian, J. Y.; Zhang, J. Q.; Zhang, W.; Zhang, Y.; Kershaw, S. V. et al. Multidentate ligand polyethylenimine enables bright color-saturated blue light-emitting diodes based on CsPbBr3 nanoplatelets. ACS Energy Lett. 2021, 6, 477–484.

    Article  CAS  Google Scholar 

  16. Dutta, S. K.; Bera, S.; Behera, R. K.; Hudait, B.; Pradhan, N. Cs-lattice extension and expansion for inducing secondary growth of CsPbBr3 perovskite nanocrystals. ACS Nano 2021, 15, 16183–16193.

    Article  CAS  PubMed  Google Scholar 

  17. Mehetor, S. K.; Ghosh, H.; Pradhan, N. Blue-emitting CsPbBr3 perovskite quantum rods and their wide-area 2D self-assembly. ACS Energy Lett. 2019, 4, 1437–1442.

    Article  CAS  Google Scholar 

  18. Mondal, S.; Paul, T.; Maiti, S.; Das, B. K.; Chattopadhyay, K. K. Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF. Nano Energy 2020, 74, 104870.

    Article  CAS  Google Scholar 

  19. Zhang, Q. G.; Wang, B.; Zheng, W. L.; Kong, L.; Wan, Q.; Zhang, C. Y.; Li, Z. C.; Cao, X. Y.; Liu, M. M.; Li, L. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nat. Commun. 2020, 11, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Antrack, T.; Kroll, M.; Sudzius, M.; Cho, C.; Imbrasas, P.; Albaladejo-Siguan, M.; Benduhn, J.; Merten, L.; Hinderhofer, A.; Schreiber, F. et al. Optical properties of perovskite-organic multiple quantum wells. Adv. Sci. 2022, 9, 2200379.

    Article  CAS  Google Scholar 

  21. Shamsi, J.; Kubicki, D.; Anaya, M.; Liu, Y.; Ji, K. Y.; Frohna, K.; Grey, C. P.; Friend, R. H.; Stranks, S. D. Stable hexylphosphonate-capped blue-emitting quantum-confined CsPbBr3 nanoplatelets. ACS Energy Lett. 2020, 5, 1900–1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, K. K.; Liu, Q.; Yang, D. W.; Liang, Y. C.; Sui, L. Z.; Wei, J. Y.; Xue, G. W.; Zhao, W. B.; Wu, X. Y.; Dong, L. et al. Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability. Light Sci. Appl. 2020, 9, 44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, M. M.; Wan, Q.; Wang, H. M.; Carulli, F.; Sun, X. C.; Zheng, W. L.; Kong, L.; Zhang, Q.; Zhang, C. Y.; Zhang, Q. G. et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photon. 2021, 15, 379–385.

    Article  CAS  Google Scholar 

  24. Zhang, Y.; Yang, H. J.; Chen, M.; Padture, N. P.; Chen, O.; Zhou, Y. Y. Fusing nanowires into thin films: Fabrication of graded-heterojunction perovskite solar cells with enhanced performance. Adv. Energy Mater. 2019, 9, 1900243.

    Article  Google Scholar 

  25. Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 2018, 12, 681–687.

    Article  CAS  Google Scholar 

  26. Song, J. Z.; Li, J. H.; Xu, L. M.; Li, J. H.; Zhang, F. J.; Han, B. N.; Shan, Q. S.; Zeng, H. B. Room- temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv. Mater. 2018, 30, 1800764.

    Article  Google Scholar 

  27. Jiang, M. W.; Hu, Z. H.; Liu, Z. H.; Wu, Z. F.; Ono, L. K.; Qi, Y. B. Engineering green-to-blue emitting CsPbBr3 quantum-dot films with efficient ligand passivation. ACS Energy Lett. 2019, 4, 2731–2738.

    Article  CAS  Google Scholar 

  28. Zhou, W. K.; Chen, S. L.; Zhao, Y. C.; Li, Q.; Zhao, Y.; Fu, R.; Yu, D. P.; Gao, P.; Zhao, Q. Constructing CsPbBr3 cluster passivated-triple cation perovskite for highly efficient and operationally stable solar cells. Adv. Funct. Mater. 2019, 29, 1809180.

    Article  Google Scholar 

  29. Kobosko, S. M.; DuBose, J. T.; Kamat, P. V. Perovskite photocatalysis. methyl viologen induces unusually long-lived charge carrier separation in CsPbBr3 nanocrystals. ACS Energy Lett. 2020, 5, 221–223.

    Article  CAS  Google Scholar 

  30. Kumawat, N. K.; Liu, X. K.; Kabra, D.; Gao, F. Blue perovskite light-emitting diodes: Progress, challenges and future directions. Nanoscale 2019, 11, 2109–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kumar, S.; Jagielski, J.; Yakunin, S.; Rice, P.; Chiu, Y. C.; Wang, M. C.; Nedelcu, G.; Kim, Y.; Lin, S. C.; Santos, E. J. G. et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano 2016, 10, 9720–9729.

    Article  CAS  PubMed  Google Scholar 

  32. Schanze, K. S.; Kamat, P. V.; Yang, P. D.; Bisquert, J. Progress in perovskite photocatalysis. ACS Energy Lett. 2020, 5, 2602–2604.

    Article  CAS  Google Scholar 

  33. Shi, E. Z.; Yuan, B.; Shiring, S. B.; Gao, Y.; Akriti; Guo, Y. F.; Su, C.; Lai, M. L.; Yang, P. D.; Kong, J. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 2020, 580, 614–620.

    Article  CAS  PubMed  Google Scholar 

  34. Bai, S.; Da, P. M.; Li, C.; Wang, Z. P.; Yuan, Z. C.; Fu, F.; Kawecki, M.; Liu, X. J.; Sakai, N.; Wang, J. T. W. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250.

    Article  CAS  PubMed  Google Scholar 

  35. Xu, Q.; Wang, R.; Jia, Y. L.; He, X. L.; Deng, Y. H.; Yu, F. X.; Zhang, Y.; Ma, X. J.; Chen, P.; Zhang, Y. et al. Highly efficient quasi-two dimensional perovskite light-emitting diodes by phase tuning. Org. Electron. 2021, 98, 106295.

    Article  CAS  Google Scholar 

  36. Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 2020, 370, 108–112.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, Y. M.; Lei, Y. S.; Li, Y. H.; Yu, Y. G.; Cai, J. Z.; Chiu, M. H.; Rao, R.; Gu, Y.; Wang, C. F.; Choi, W. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 2020, 577, 209–215.

    Article  CAS  PubMed  Google Scholar 

  38. Qin, C. J.; Matsushima, T.; Potscavage, W. J.; Sandanayaka, A. S. D.; Leyden, M. R.; Bencheikh, F.; Goushi, K.; Mathevet, F.; Heinrich, B.; Yumoto, G. et al. Triplet management for efficient perovskite light-emitting diodes. Nat. Photon. 2020, 14, 70–75.

    Article  CAS  Google Scholar 

  39. Hu, M. L.; Masoomi, M. Y.; Morsali, A. Template strategies with MOFs. Coord. Chem. Rev. 2019, 387, 415–435.

    Article  CAS  Google Scholar 

  40. Guillou, O.; Daiguebonne, C.; Calvez, G.; Bernot, K. A long journey in lanthanide chemistry: From fundamental crystallogenesis studies to commercial anticounterfeiting taggants. Acc. Chem. Res. 2016, 49, 844–856.

    Article  CAS  PubMed  Google Scholar 

  41. Zheng, X. H.; Wang, L.; Pei, Q.; He, S. S.; Liu, S.; Xie, Z. G. Metal-organic framework@porous organic polymer nanocomposite for photodynamic therapy. Chem. Mater. 2017, 29, 2374–2381.

    Article  CAS  Google Scholar 

  42. Wang, Y.; Liu, B. R.; Shen, X. J.; Arandiyan, H.; Zhao, T. W.; Li, Y. B.; Garbrecht, M.; Su, Z.; Han, L.; Tricoli, A. et al. Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation. Adv. Energy Mater. 2021, 11, 2003759.

    Article  CAS  Google Scholar 

  43. Nie, W. Y.; Tsai, H. Perovskite nanocrystals stabilized in metal-organic frameworks for light emission devices. J. Mater. Chem. A 2022, 10, 19518–19533.

    Article  CAS  Google Scholar 

  44. Shankar, H.; Yu, W. W.; Kang, Y.; Kar, P. Significant boost of the stability and PLQY of CsPbBr3 NCs by Cu-BTC MOF. Sci. Rep. 2022, 12, 7848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22271080) and the Joint Guidance Project of Heilongjiang Natural Science Foundation (No. LH2023B020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofeng Wang.

Electronic supplementary material

12274_2024_6663_MOESM1_ESM.pdf

Simultaneous improving luminescence intensity and stability of CsPbBr3:SCN@Eu/Zr-Uio-66-NH2 with tunable emissions from blue to green and applications in indoor photovoltaics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Sun, Y., Lu, H. et al. Simultaneous improving luminescence intensity and stability of CsPbBr3:SCN@Eu/Zr-Uio-66-NH2 with tunable emissions from blue to green and applications in indoor photovoltaics. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6663-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6663-9

Keywords

Navigation