Skip to main content
Log in

Ultrathin polyimide-based composites with efficient low-reflectivity electromagnetic shielding and infrared stealth performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Researching and manufacturing materials that possess both electromagnetic interference (EMI) shielding and infrared stealth capabilities is of great significance. Herein, an ultrathin polyimide-based nonwoven fabric with low-reflection EMI shielding/infrared stealth performance is successfully fabricated by in-situ loading of Fe3O4/Ag nanoparticles on the surface of polyimide (PI) fiber (PFA), and followed by bonding with a commercial Cu/Ni mesh. The synergistic assembly of PFA and Cu/Ni promotes the rational construction of hierarchical impedance matching, inducing electromagnetic waves (EMW) to enter the composite and be dissipated as much as possible. Meanwhile, the existence of Cu/Ni mesh on back of PFA facilitates the formation of electromagnetic resonance and destructive interference of EMW reflected from composite, leading to a lower-reflectivity (0.26) EMI shielding performance of 58 dB within 24–40 GHz at a thinner thickness (430 µm). More importantly, the fluffy PFA nonwoven fabric and metal Cu/Ni mesh endow composite with good thermal insulation and low infrared emissivity, resulting in excellent infrared stealth performance in various environments. As a result, such excellent compatibility makes it possible to become a promising defense material to be applied in military tent for preventing electromagnetic and infrared radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y. H.; Shen, G. D.; Lam, S. S.; Ansar, S.; Jung, S. C.; Ge, S. B.; Hou, L.; Fan, Z. K.; Wang, F.; Fan, W. A waste textiles-based multilayer composite fabric with superior electromagnetic shielding, infrared stealth and flame retardance for military applications. Chem. Eng. J. 2023, 471, 144679.

    Article  CAS  Google Scholar 

  2. Xiong, C. Y.; Wang, T. X.; Zhang, Y. K.; Zhu, M.; Ni, Y. H. Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources. Nano Res. 2022, 15, 7506–7532.

    Article  Google Scholar 

  3. He, J.; Han, M. J.; Wen, K.; Liu, C. L.; Zhang, W.; Liu, Y. Q.; Su, X. G.; Zhang, C. R.; Liang, C. B. Absorption-dominated electromagnetic interference shielding assembled composites based on modular design with infrared camouflage and response switching. Compos. Sci. Technol. 2023, 231, 109799.

    Article  CAS  Google Scholar 

  4. Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

    Article  CAS  Google Scholar 

  5. Guo, Y. Q.; Qiu, H.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 2022, 14, 26.

    Article  CAS  Google Scholar 

  6. Wang, Y. Y.; Zhang, F.; Li, N.; Shi, J. F.; Jia, L. C.; Yan, D. X.; Li, Z. M. Carbon-based aerogels and foams for electromagnetic interference shielding: a review. Carbon 2023, 205, 10–26.

    Article  CAS  Google Scholar 

  7. Jia, X. C.; Li, Y.; Shen, B.; Zheng, W. G. Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: a review. Compos. B. Eng. 2022, 233, 109652.

    Article  CAS  Google Scholar 

  8. Chen, K. X.; Liu, M.; Shi, Y. Q.; Wang, H. R.; Fu, L. B.; Feng, Y. Z.; Song, P. A. Multi-hierarchical flexible composites towards superior fire safety and electromagnetic interference shielding. Nano Res. 2022, 15, 9531–9543.

    Article  CAS  Google Scholar 

  9. Duan, H. J.; He, P. Y.; Zhu, H. X.; Yang, Y. Q.; Zhao, G. Z.; Liu, Y. Q. Constructing 3D carbon-metal hybrid conductive network in polymer for ultra-efficient electromagnetic interference shielding. Compos. B. Eng. 2021, 212, 108690.

    Article  CAS  Google Scholar 

  10. Zhu, M. Y.; Li, G. Y.; Gong, W. B.; Yan, L. F.; Zhang, X. T. Calcium-doped boron nitride aerogel enables infrared stealth at high temperature up to 1300 °C. Nano-Micro Lett. 2022, 14, 18.

    Article  CAS  Google Scholar 

  11. Feng, S. Y.; Yi, Y.; Chen, B. X.; Deng, P. C.; Zhou, Z. H.; Lu, C. H. Rheology-guided assembly of a highly aligned MXene/cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth. ACS Appl. Mater. Interfaces 2022, 14, 36060–36070.

    Article  CAS  PubMed  Google Scholar 

  12. Xu, Y. D.; Yang, Y. Q.; Yan, D. X.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q. Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl. Mater. Interfaces 2018, 10, 19143–19152.

    Article  CAS  PubMed  Google Scholar 

  13. Singh, A. K.; Shishkin, A.; Koppel, T.; Gupta, N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. B. Eng. 2018, 149, 188–197.

    Article  CAS  Google Scholar 

  14. Zhang, Y. L.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Pan, Y.; Yan, Y.; Gu, J. W. Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 2021, 175, 271–280.

    Article  CAS  Google Scholar 

  15. Zhao, H.; Huang, Y. S.; Han, Y. C.; Yun, J.; Wang, X. L.; Jin, L.; Zheng, Y. P.; Chen, L. X. Flexible and lightweight porous polyether sulfone/Cu composite film with bidirectional differential structure for electromagnetic interference shielding and heat conduction. Chem. Eng. J. 2022, 440, 135919.

    Article  CAS  Google Scholar 

  16. Zhang, Y.; Yang, S. D.; Zhang, Q.; Ma, Z. Y.; Guo, Y. J.; Shi, M.; Wu, H.; Guo, S. Y. Constructing interconnected asymmetric conductive network in TPU fibrous film: achieving low-reflection electromagnetic interference shielding and surperior thermal conductivity. Carbon 2023, 206, 37–44.

    Article  CAS  Google Scholar 

  17. Lv, Z.; Kong, L. J.; Sun, P. Q.; Lin, Y. X.; Wang, Y. Y.; Xiao, C.; Liu, X. L.; Zhang, X.; Zheng, K.; Tian, X. Y. Dual-functional eco-friendly liquid metal/boron nitride/silk fibroin composite film with outstanding thermal conductivity and electromagnetic shielding efficiency. Compos. Commun. 2023, 39, 101565.

    Article  Google Scholar 

  18. Chen, M. X.; Jiang, X. P.; Huang, J.; Yang, J. B.; Wu, J. G.; Liang, Y. M.; Wang, T. W.; Yan, P. G. Flexible wearable Ti3C2Tx composite carbon fabric textile with infrared stealth and electromagnetic interference shielding effect. Adv. Opt. Mater. 2024, 12, 2301694.

    Article  CAS  Google Scholar 

  19. Guo, Z. Z.; Ren, P. G.; Yang, F.; Wu, T.; Zhang, L. X.; Chen, Z. Y.; Ren, F. Robust multifunctional composite films with alternating multilayered architecture for highly efficient electromagnetic interference shielding, Joule heating and infrared stealth. Compos. B. Eng. 2023, 263, 110863.

    Article  CAS  Google Scholar 

  20. Wen, C. Y.; Zhao, B.; Liu, Y. H.; Xu, C. Y.; Wu, Y. Y.; Cheng, Y. F.; Liu, J. W.; Liu, Y. X.; Yang, Y. X.; Pan, H. G.; Zhang, J. C.; Wu, L. M.; Che, R. C. Flexible MXene-based composite films for multispectra defense in radar, infrared and visible light bands. Adv. Funct. Mater. 2023, 33, 2214223.

    Article  CAS  Google Scholar 

  21. Zhao, B.; Hamidinejad, M.; Wang, S.; Bai, P. W.; Che, R. C.; Zhang, R.; Park, C. B. Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 2021, 9, 8896–8949.

    Article  CAS  Google Scholar 

  22. Fang, G.; He, T. A.; Hu, X. X.; Yang, X. M.; Zheng, S. Q.; Xu, G. Y.; Liu, C. Y. Bionic octopus structure inspired stress-driven reconfigurable microwave absorption and multifunctional compatibility in infrared stealth and de-icing. Chem. Eng. J. 2023, 467, 143266.

    Article  CAS  Google Scholar 

  23. Xie, Z. X.; Cai, Y. F.; Zhan, Y. H.; Meng, Y. Y.; Li, Y. C.; Xie, Q.; Xia, H. S. Thermal insulating rubber foams embedded with segregated carbon nanotube networks for electromagnetic shielding applications. Chem. Eng. J. 2022, 435, 135118.

    Article  CAS  Google Scholar 

  24. Cheng, H. R.; Pan, Y. M.; Wang, X.; Liu, C. T.; Shen, C. Y.; Schubert, D. W.; Guo, Z. H.; Liu, X. H. Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 2022, 14, 116.

    Article  Google Scholar 

  25. Hu, J. H.; Hu, Y.; Ye, Y. H.; Shen, R. Q. Unique applications of carbon materials in infrared stealth: A review. Chem. Eng. J. 2023, 452, 139147.

    Article  CAS  Google Scholar 

  26. Zeng, Z. H.; Jin, H.; Chen, M. J.; Li, W. W.; Zhou, L. C.; Xue, X.; Zhang, Z. Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 2017, 13, 1701388.

    Article  Google Scholar 

  27. Li, X. Y.; Wu, M. H.; Chen, J. L.; Zhou, X.; Ren, Q.; Wang, L.; Shen, B.; Zheng, W. G. A facile and large-scale approach to prepare macroscopic segregated polyether block amides/carbon nanostructures composites with a gradient structure for absorption-dominated electromagnetic shielding with ultra-low reflection. Compos. Commun. 2023, 40, 101628.

    Article  Google Scholar 

  28. Liu, B. W.; Cao, M.; Zhang, Y. Y.; Wang, Y. Z.; Zhao, H. B. Multifunctional protective aerogel with superelasticity over −196 to 500 °C. Nano Res. 2022, 15, 7797–7805.

    Article  CAS  Google Scholar 

  29. Sun, Z. P.; Shen, B.; Li, Y.; Chen, J. L.; Zheng, W. G. High-performance porous carbon foams via catalytic pyrolysis of modified isocyanate-based polyimide foams for electromagnetic shielding. Nano Res. 2022, 15, 6851–6859.

    Article  CAS  Google Scholar 

  30. Jiang, S. H.; Hou, H. Q.; Agarwal, S.; Greiner, A. Polyimide nanofibers by “Green” electrospinning via aqueous solution for filtration applications. ACS Sustain. Chem. Eng. 2016, 4, 4797–4804.

    Article  CAS  Google Scholar 

  31. Al-Saleh, M. H.; Sundararaj, U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 2009, 47, 1738–1746.

    Article  CAS  Google Scholar 

  32. Xu, L. J.; Lin, Z. C.; Chen, Y. J.; Fan, Z.; Pei, X. R.; Yang, S.; Kou, X.; Wang, Y. C.; Zou, Z. Y.; Xi, D.; Yin, P. F.; Su, G. H.; Zhou, M.; Dai, J. W.; Pan, L. J.; Zhao, Y. P. Carbon-based cages with hollow confined structures for efficient microwave absorption: State of the art and prospects. Carbon 2023, 201, 1090–1114.

    Article  CAS  Google Scholar 

  33. Wang, M. L.; Zhang, S.; Zhou, Z. H.; Zhu, J. L.; Gao, J. F.; Dai, K.; Huang, H. D.; Li, Z. M. Facile heteroatom doping of biomass-derived carbon aerogels with hierarchically porous architecture and hybrid conductive network: Towards high electromagnetic interference shielding effectiveness and high absorption coefficient. Compos. B. Eng. 2021, 224, 109175.

    Article  CAS  Google Scholar 

  34. Chen, X. Z.; Chen, J. L.; Shen, B.; Zheng, W. G. Construction of designable and high-temperature resistant composite foams for tunable electromagnetic shielding. Compos. Commun. 2024, 45, 101780.

    Article  Google Scholar 

  35. Ruckdeschel, P.; Philipp, A.; Retsch, M. Understanding thermal insulation in porous, particulate materials. Adv. Funct. Mater. 2017, 27, 1702256.

    Article  Google Scholar 

  36. Gu, W. H.; Ong, S. J. H.; Shen, Y. H.; Guo, W. Y.; Fang, Y. T.; Ji, G. B.; Xu, Z. C. J. A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 2022, 9, 2204165.

    Article  CAS  Google Scholar 

  37. Shi, H. G.; Zhao, H. B.; Liu, B. W.; Wang, Y. Z. Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 26505–26514.

    Article  CAS  PubMed  Google Scholar 

  38. Ryu, S. H.; Han, Y. K.; Kwon, S. J.; Kim, T.; Jung, B. M.; Lee, S. B.; Park, B. Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. 2022, 428, 131167.

    Article  CAS  Google Scholar 

  39. Ryu, S. H.; Park, B.; Han, Y. K.; Kwon, S. J.; Kim, T.; Lamouri, R.; Kim, K. H.; Lee, S. B. Electromagnetic wave shielding flexible films with near-zero reflection in the 5G frequency band. J. Mater. Chem. A 2022, 10, 4446–4455.

    Article  CAS  Google Scholar 

  40. Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

    Article  CAS  Google Scholar 

  41. Hu, R. C.; Pan, D. S.; Xu, X. W.; Xiao, B.; Wang, H. Tunable natural resonances via synergistic effects of two phases in Fex(COyNi1−y)100−x: for multi-band microwave absorption. J. Materiomics 2023, 9, 90–98.

    Article  Google Scholar 

  42. Im, H. J.; Oh, J. Y.; Ryu, S.; Hong, S. H. The design and fabrication of a multilayered graded GNP/Ni/PMMA nanocomposite for enhanced EMI shielding behavior. RSC Adv. 2019, 9, 11289–11295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fan, W.; Zuo, L. Z.; Zhang, Y. F.; Chen, Y.; Liu, T. X. Mechanically strong polyimide/carbon nanotube composite aerogels with controllable porous structure. Compos. Sci. Technol. 2018, 156, 186–191.

    Article  CAS  Google Scholar 

  44. Ding, Q. W.; Miao, Y. E.; Liu, T. X. Morphology and photocatalytic property of hierarchical polyimide/ZnO fibers prepared via a direct ion-exchange process. ACS Appl. Mater. Interfaces 2013, 5, 5617–5622.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, X. Y.; Yang, F.; Wang, Z. C.; Ma, P. M.; Dong, W. F.; Hou, H. Q.; Fan, W.; Liu, T. X. Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers. Compos. B. Eng. 2020, 182, 107624.

    Article  CAS  Google Scholar 

  46. Tang, X. W.; Zhao, X.; Lu, Y. Z.; Li, S. S.; Zhang, Z. H.; Zhu, M. Y.; Yao, K. Q.; Zheng, J. X.; Chen, H. J.; Duan, Y. Q.; Qiao, Y. L.; Wang, Z. C.; Liu, T. X. Flexible metalized polyimide nonwoven fabrics for efficient electromagnetic interference shielding. Chem. Eng. J. 2024, 480, 148000.

    Article  CAS  Google Scholar 

  47. Huang, Y. P.; Miao, Y. E.; Liu, T. X. Electrospun fibrous membranes for efficient heavy metal removal. J. Appl. Polym. Sci. 2014, 131, 40864.

    Article  Google Scholar 

  48. Ikeda, S.; Yanagimoto, H.; Akamatsu, K.; Nawafune, H. Copper/polyimide heterojunctions: controlling interfacial structures through an additive-based, all-wet chemical process using ion-doped precursors. Adv. Funct. Mater. 2007, 17, 889–897.

    Article  CAS  Google Scholar 

  49. Zhang, M. Y.; Liu, L. Z.; Zhang, C. Q. Fabrication and properties of polyimide/aluminum oxide composite films via different alkali etching and ion exchange technique. IOP Conference Series: Mater. Sci. Eng. 2020, 782, 022096.

    Article  CAS  Google Scholar 

  50. Stephans, L. E.; Myles, A.; Thomas, R. R. Kinetics of alkaline hydrolysis of a polyimide surface. Langmuir 2000, 16, 4706.

    Article  CAS  Google Scholar 

  51. Zhou, S. X.; Dong, J.; Li, X. T.; Zhao, X.; Zhang, Q. H. Continuous surface metallization of polyimide fibers for textile-substrate electromagnetic shielding applications. Adv. Fiber Mater. 2023, 5, 1892–1904.

    Article  CAS  Google Scholar 

  52. Du, S. N.; Luo, Y.; Liao, Z. F.; Zhang, W.; Li, X. H.; Liang, T. Y.; Zuo, F.; Ding, K. Y. New insights into the formation mechanism of gold nanoparticles using dopamine as a reducing agent. J. Colloid Interface Sci. 2018, 523, 27–34.

    Article  CAS  PubMed  Google Scholar 

  53. Liu, H.; Zhu, L. L.; He, Y.; Cheng, B. W. A novel method for fabricating elastic conductive polyurethane filaments by in-situ reduction of polydopamine and electroless silver plating. Mater. Des. 2017, 113, 254–263.

    Article  CAS  Google Scholar 

  54. Yang, Z.; Wu, Y. C.; Wang, J. Q.; Cao, B.; Tang, C. Y. Y. In situ reduction of silver by polydopamine: A novel antimicrobial modification of a thin-film composite polyamide membrane. Environ. Sci. Technol. 2016, 50, 9543–9550.

    Article  CAS  PubMed  Google Scholar 

  55. Song, Y. R.; Jian, M. L.; Qiao, L. L.; Zhao, Z. Y.; Yang, Y. J.; Jiao, T. F.; Zhang, Q. R. Efficient removal and recovery of ag from wastewater using charged polystyrene-polydopamine nanocoatings and their sustainable catalytic application in 4-nitrophenol reduction. ACS Appl. Mater. Interfaces 2024, 16, 5834–5846.

    Article  CAS  PubMed  Google Scholar 

  56. Maw, S. S.; Watanabe, S.; Miyahara, M. T. Flow synthesis of silver nanoshells using a microreactor. Chem. Eng. J. 2019, 374, 674–683.

    Article  CAS  Google Scholar 

  57. Xie, S.; Ji, Z. J.; Zhu, L. C.; Zhang, J. J.; Cao, Y. X.; Chen, J. H.; Liu, R. R.; Wang, J. Recent progress in electromagnetic wave absorption building materials. J. Build. Eng. 2020, 27, 100963.

    Article  Google Scholar 

  58. Ade, P. A. R.; Pisano, G.; Tucker, C.; Weaver, S. A review of metal mesh filters. Proceedings of SPIE, in press, DOI: https://doi.org/10.1117/12.673162.

  59. Panwar, R.; Agarwala, V.; Singh, D. A cost effective solution for development of broadband radar absorbing material using electronic waste. Ceram. Int. 2015, 41, 2923–2930.

    Article  CAS  Google Scholar 

  60. Wu, Y.; Tan, S. J.; Zhao, Y.; Liang, L. L.; Zhou, M.; Ji, G. B. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog. Mater. Sci. 2023, 135, 101088.

    Article  Google Scholar 

  61. Wang, Y. F.; Niu, J. R.; Jin, X.; Qian, X. M.; Xiao, C. F.; Wang, W. Y. Molecularly resonant metamaterials for broad-band electromagnetic stealth. Adv. Sci. 2023, 10, 2301170.

    Article  CAS  Google Scholar 

  62. Mai, T.; Guo, W. Y.; Wang, P. L.; Chen, L.; Qi, M. Y.; Liu, Q.; Ding, Y.; Ma, M. G. Bilayer metal-organic frameworks/MXene/nanocellulose paper with electromagnetic double loss for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 2023, 464, 142517.

    Article  CAS  Google Scholar 

  63. Singh, A. P.; Garg, P.; Alam, F.; Singh, K.; Mathur, R. B.; Tandon, R. P.; Chandra, A.; Dhawan, S. K. Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 2012, 50, 3868–3875.

    Article  CAS  Google Scholar 

  64. Lan, C. T.; Zou, L. H.; Wang, N.; Qiu, Y. P.; Ma, Y. Multi-reflection-enhanced electromagnetic interference shielding performance of conductive nanocomposite coatings on fabrics. J. Colloid Interface Sci. 2021, 590, 467–475.

    Article  CAS  PubMed  Google Scholar 

  65. Yin, J.; Zhang, J. X.; Zhang, S. D.; Liu, C.; Yu, X. L.; Chen, L. Q.; Song, Y. P.; Han, S.; Xi, M.; Zhang, C. L.; Li, N.; Wang, Z. Y. Flexible 3D porous graphene film decorated with nickel nanoparticles for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 2021, 421, 129763.

    Article  CAS  Google Scholar 

  66. Singh, P.; Del R. T.; Palasyuk, A.; Mudryk, Y. Physics-Informed machine-learning prediction of curie temperatures and its promise for guiding the discovery of functional magnetic materials. Chem. Mater. 2023, 35, 6304–6312.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from National Natural Science Foundation of China (Nos. 52373077, 52003106, and 52161135302), the Research Foundation Flanders (No. G0F2322N), Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX23_1236), and the Innovation Program of Shanghai Municipal Education Commission (No. 2021-01-07-00-03-E00108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zicheng Wang or Tianxi Liu.

Electronic Supplementary Material

Supplementary material, approximately 1.89 MB.

Supplementary material, approximately 1.57 MB.

12274_2024_6650_MOESM3_ESM.pdf

Ultrathin polyimide-based composites with efficient low-reflectivity electromagnetic shielding and infrared stealth performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Tang, X., Qiao, Y. et al. Ultrathin polyimide-based composites with efficient low-reflectivity electromagnetic shielding and infrared stealth performance. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6650-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6650-1

Keywords

Navigation