Skip to main content
Log in

Tortuosity regulation of two-dimensional nanofluidic films for water evaporation-induced electricity generation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Water evaporation-induced electricity generation is a promising technology for renewable energy harvesting. However, the output power of some reported two-dimensional (2D) nanofluidic films is still restricted by the relatively weak water–solid interactions within the tortuous nanochannels. To further enhance the comprehension and utilization of water–solid interactions, it is of utmost importance to conduct an in-depth investigation and propose a regulatory concept encompassing ion transport. Herein, we propose tortuosity regulation of 2D nanofluidic titanium oxide (Ti0.87O2) films to optimize the ion transport within the interlayer nanochannel for enhanced efficiency in water evaporation-induced electricity generation for the first time. The significance of tortuosity in ion transport is elucidated by designing three 2D nanofluidic films with different tortuosity. Tortuosity analysis and in situ Raman measurement demonstrate that low tortuosity can facilitate the formation of efficient pathways for hydrated proton transport and promote water–solid interactions. Consequently, devices fabricated with the optimized 2D nanofluidic films exhibited a significantly enhanced output power density of approximately 204.01 µW·cm−2, far exceeding those prepared by the high-tortuosity 2D nanofluidic films. This work highlights the significance of the construction of low tortuosity channels for 2D nanofluidic films with excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, Y. X.; Cheng, H. H.; Yang, C.; Yao, H. Z.; Li, C.; Qu, L. T. All-region-applicable, continuous power supply of graphene oxide composite. Energy Environ. Sci. 2019, 12, 1848–1856.

    Article  CAS  Google Scholar 

  2. Liang, Y.; Zhao, F.; Cheng, Z. H.; Deng, Y. X.; Xiao, Y. K.; Cheng, H. H.; Zhang, P. P.; Huang, Y. X.; Shao, H. B.; Qu, L. T. Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy Environ. Sci. 2018, 11, 1730–1735.

    Article  CAS  Google Scholar 

  3. Aji, A. S.; Nishi, R.; Ago, H.; Ohno, Y. High output voltage generation of over 5 V from liquid motion on single-layer MoS2. Nano Energy 2020, 68, 104370.

    Article  CAS  Google Scholar 

  4. Zhong, H. K.; Xia, J.; Wang, F. C.; Chen, H. S.; Wu, H. G.; Lin, S. S. Gaaphene–piezoelectric material heterostructure for harvesting energy from water flow. Adv. Funct. Mater. 2017, 27, 1604226.

    Article  Google Scholar 

  5. Liu, C.; Ye, C. C.; Wu, Y. Y.; Liu, Y. F.; Liu, Z. H.; Chen, Z. T.; Ma, R. Z.; Sakai, N.; Xue, L.; Sun, J. W. et al. Atomic-scale engineering of cation vacancies in two-dimensional unilamellar metal oxide nanosheets for electricity generation from water evaporation. Nano Energy 2023, 110, 108348.

    Article  CAS  Google Scholar 

  6. Cai, M.; Wei, Y. X.; Li, Y. K.; Li, X.; Wang, S. B.; Shao, G. S.; Zhang, P. 2D semiconductor nanosheets for solar photocatalysis. EcoEnergy 2023, 1, 248–295

    Article  Google Scholar 

  7. Chen, Y. X.; Lu, C. Graphitic carbon nitride nanomaterials for highperformance supercapacitors. Carbon Neutralizat. 2023, 2, 585–602.

    Article  CAS  Google Scholar 

  8. Sun, Z. Y.; Wen, X.; Wang, L. M.; Ji, D. X.; Qin, X. H.; Yu, J. Y.; Ramakrishna, S. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2022, 2, 32–46.

    Article  Google Scholar 

  9. Shen, D. Z.; Duley, W. W.; Peng, P.; Xiao, M.; Feng, J. Y.; Liu, L.; Zou, G. S.; Zhou, Y. N. Moisture-enabled electricity generation: From physics and materials to self-powered applications. Adv. Mater. 2020, 32, 2003722.

    Article  Google Scholar 

  10. Zhang, S. Y.; Chu, W. C.; Li, L. X.; Guo, W. L. Voltage distribution in porous carbon black films induced by water evaporation. J. Phys. Chem. C 2021, 125, 8959–8964.

    Article  CAS  Google Scholar 

  11. Sun, Z. Z.; Han, C. L.; Gao, S. W.; Li, Z. X.; Jing, M. X.; Yu, H. P.; Wang, Z. K. Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator. Nat. Commun. 2022, 13, 5077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu, Y. Z.; Xu, J. L.; Zhang, J. Y.; Li, X. X.; Fu, B. W.; Song, C. Y.; Shang, W.; Tao, P.; Deng, T. All-in-one polymer sponge composite 3D evaporators for simultaneous high-flux solar-thermal desalination and electricity generation. Nano Energy 2022, 93, 106882.

    Article  CAS  Google Scholar 

  13. Shao, C. X.; Ji, B. X.; Xu, T.; Gao, J.; Gao, X.; Xiao, Y. K.; Zhao, Y.; Chen, N.; Jiang, L.; Qu, L. T. Large-scale production of flexible, high-voltage hydroelectric films based on solid oxides. ACS Appl. Mater. Interfaces 2019, 11, 30927–30935.

    Article  CAS  PubMed  Google Scholar 

  14. Fang, S. M.; Li, J. D.; Xu, Y.; Shen, C.; Guo, W. L. Evaporating potential. Joule 2022, 6, 690–701.

    Article  Google Scholar 

  15. Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, G.; Duan, Z.; Qi, X.; Xu, Y. T.; Li, L.; Ma, W. G.; Zhang, H.; Liu, C. H.; Yao, W. Harvesting environment energy from water-evaporation over free-standing graphene oxide sponges. Carbon 2019, 148, 1–8.

    Article  CAS  Google Scholar 

  17. Ma, Q. L.; He, Q. Y.; Yin, P. F.; Cheng, H. F.; Cui, X. Y.; Yun, Q. B.; Zhang, H. Rational design of MOF-based hybrid nanomaterials for directly harvesting electric energy from water evaporation. Adv. Mater. 2020, 32, 2003720.

    Article  CAS  Google Scholar 

  18. Yoon, S. G.; Jin, H. D.; Lee, W. H.; Han, J.; Cho, Y. H.; Kim, Y. S. Evaporative electrical energy generation via diffusion-driven ion-electron-coupled transport in semiconducting nanoporous channel. Nano Energy 2021, 80, 105522.

    Article  CAS  Google Scholar 

  19. Sun, J. C.; Li, P. D.; Qu, J. Y.; Lu, X.; Xie, Y. Q.; Gao, F.; Li, Y.; Gang, M.; Feng, Q. J.; Liang, H. W. et al. Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy 2019, 57, 269–278.

    Article  CAS  Google Scholar 

  20. Tian, J. L.; Zang, Y. H.; Sun, J. C.; Qu, J. Y.; Gao, F.; Liang, G. Y. Surface charge density-dependent performance of Ni-Al layered double hydroxide-based flexible self-powered generators driven by natural water evaporation. Nano Energy 2020, 70, 104502.

    Article  CAS  Google Scholar 

  21. Yoon, S. G.; Yang, Y.; Yoo, J.; Jin, H. D.; Lee, W. H.; Park, J.; Kim, Y. S. Natural evaporation-driven ionovoltaic electricity generation. ACS Appl. Electron. Mater. 2019, 1, 1746–1751.

    Article  CAS  Google Scholar 

  22. Wang, X.; Yuan, G.; Zhou, H.; Jiang, Y.; Wang, S.; Ma, J. J.; Yang, C. Y.; Hu, S. Composite laminar membranes for electricity generation from water evaporation. Nano Res. 2024, 17, 307–311.

    Article  CAS  Google Scholar 

  23. Liu, K.; Yang, P. H.; Li, S.; Li, J.; Ding, T. P.; Xue, G. B.; Chen, Q.; Feng, G.; Zhou, J. Induced potential in porous carbon films through water vapor absorption. Angew Chem., Int. Ed. 2016, 55, 8003–8007.

    Article  CAS  Google Scholar 

  24. Ai, X. Y.; Li, Y. H.; Li, Y. W.; Gao, T. T.; Zhou, K. G. Recent progress on the smart membranes based on two-dimensional materials. Chin. Chem. Lett. 2022, 33, 2832–2844.

    Article  CAS  Google Scholar 

  25. Li, Z. Y.; Ma, X.; Chen, D. K.; Wan, X. Y.; Wang, X. B.; Fang, Z.; Peng, X. S. Polyaniline-coated MOFs nanorod arrays for efficient evaporation-driven electricity generation and solar steam desalination. Adv. Sci. (Weinh.) 2021, 8, 2004552.

    CAS  PubMed  Google Scholar 

  26. Wei, D.; Yang, F. Y.; Jiang, Z. H.; Wang, Z. L. Flexible iontronics based on 2D nanofluidic material. Nat. Commun. 2022, 13, 4965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Z. K.; Shen, W. H.; Lin, L. X.; Wang, M.; Li, N.; Zheng, Z. F.; Liu, F.; Cao, L. X. Vertically transported graphene oxide for highperformance osmotic energy conversion. Adv. Sci. (Weinh.) 2020, 7, 2000286.

    CAS  PubMed  Google Scholar 

  28. Guo, Q.; Chen, N.; Qu, L. T. Two-dimensional materials of group-IVA boosting the development of energy storage and conversion. Carbon Energy 2020, 2, 54–71.

    Article  Google Scholar 

  29. Liu, Z. H.; Liu, C.; Chen, Z. T.; Huang, H. L.; Liu, Y. F.; Xue, L.; Sun, J. W.; Wang, X.; Xiong, P.; Zhu, J. W. Recent advances in two-dimensional materials for hydrovoltaic energy technology. Exploration 2023, 3, 20220061.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tjaden, B.; Brett, D. J. L.; Shearing, P. R. Tortuosity in electrochemical devices: A review of calculation approaches. Int. Mater. Rev. 2016, 63, 47–67.

    Article  Google Scholar 

  31. Sobieski, W. Numerical Investigations of tortuosity in randomly generated pore structures. Math. Comput. Simul. 2019, 166, 1–20.

    Article  Google Scholar 

  32. Qin, D. T.; Liu, Z. Y.; Bai, H. W.; Sun, D. D. Three-dimensional architecture constructed from a graphene oxide nanosheet-polymer composite for high-flux forward osmosis membranes. J. Mater. Chem. A 2017, 5, 12183–12192.

    Article  CAS  Google Scholar 

  33. Da Silva, M. T. Q. S.; Do Rocio Cardoso, M.; Veronese, C. M. P.; Mazer, W. Tortuosity: A brief review. Mater. Today Proc. 2022, 58, 1344–1349.

    Article  CAS  Google Scholar 

  34. Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N. R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D. et al. Fast charging of lithium-ion batteries: A review of materials aspects. Adv. Energy Mater. 2021, 11, 2101126.

    Article  CAS  Google Scholar 

  35. Kuang, Y. D.; Chen, C. J.; Kirsch, D.; Hu, L. B. Thick electrode batteries: Principles, opportunities, and challenges. Adv. Energy Mater. 2019, 9, 1901457.

    Article  Google Scholar 

  36. Ebner, M.; Geldmacher, F.; Marone, F.; Stampanoni, M.; Wood, V. X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv. Energy Mater. 2013, 3, 845–850.

    Article  CAS  Google Scholar 

  37. Xue, X. Z.; Lin, D.; Li, Y. Low tortuosity 3D-printed structures enhance reaction kinetics in electrochemical energy storage and electrocatalysis. Small Structures 2022, 3, 2200159.

    Article  CAS  Google Scholar 

  38. Huang, H. L.; Liu, C.; Liu, Z. Y.; Wu, Y. Y.; Liu, Y. F.; Fan, J. B.; Zhang, G.; Xiong, P.; Zhu, J. W. Functional inorganic additives in composite solid-state electrolytes for flexible lithium metal batteries. Adv. Powder Mater. 2024, 3, 100141.

    Article  Google Scholar 

  39. Ebner, M.; Wood, V. Tool for tortuosity estimation in lithium ion battery porous electrodes. J. Electrochem. Soc. 2015, 162, A3064–A3070.

    Article  CAS  Google Scholar 

  40. Li, L. S.; Erb, R. M.; Wang, J. J.; Wang, J.; Chiang, Y. M. Fabrication of low-tortuosity ultrahigh-area-capacity battery electrodes through magnetic alignment of emulsion-based slurries. Adv. Energy Mater. 2019, 9, 1802472.

    Article  Google Scholar 

  41. Zhou, Y. B.; Chen, C. J.; Zhang, X.; Liu, D. P.; Xu, L. S.; Dai, J. Q.; Liou, S. C.; Wang, Y. L.; Li, C.; Xie, H. et al. Decoupling ionic and electronic pathways in low-dimensional hybrid conductors. J. Am. Chem. Soc. 2019, 141, 17830–17837.

    Article  CAS  PubMed  Google Scholar 

  42. Qin, S.; Liu, D.; Wang, G.; Portehault, D.; Garvey, C. J.; Gogotsi, Y.; Lei, W. W.; Chen, Y. High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers. J. Am. Chem. Soc. 2017, 139, 6314–6320.

    Article  CAS  PubMed  Google Scholar 

  43. Yu, L.; Gao, T. T.; Mi, R. Y.; Huang, J.; Kong, W. Q.; Liu, D. P.; Liang, Z. Q.; Ye, D. D.; Chen, C. J. 3D-printed mechanically strong and extreme environment adaptable boron nitride/cellulose nanofluidic macrofibers. Nano Res. 2023, 16, 7609–7617

    Article  CAS  Google Scholar 

  44. Xiong, P.; Zhang, F.; Zhang, X. Y.; Liu, Y. F.; Wu, Y. Y.; Wang, S. J.; Safaei, J.; Sun, B.; Ma, R. Z.; Liu, Z. W. et al. Atomic-scale regulation of anionic and cationic migration in alkali metal batteries. Nat. Commun. 2021, 12, 4184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cai, T. L.; Lan, L. Y.; Peng, B.; Zhang, C.; Dai, S. F.; Zhang, C.; Ping, J. F.; Ying, Y. B. Bilayer wood membrane with aligned ion nanochannels for spontaneous moist-electric generation. Nano Lett. 2022, 22, 6476–6483.

    Article  CAS  PubMed  Google Scholar 

  46. Wang, L. Z.; Sasaki, T. Titanium oxide nanosheets: Graphene analogues with versatile functionalities. Chem. Rev. 2014, 114, 9455–9486.

    Article  CAS  PubMed  Google Scholar 

  47. Sasaki, T.; Watanabe, M.; Hashizume, H.; Yamada, H.; Nakazawa, H. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. J. Am. Chem. Soc. 1996, 118, 8329–8335.

    Article  CAS  Google Scholar 

  48. Li, J.; Liu, J.; Sun, Q.; Banis, M. N.; Sun, X. L.; Sham, T. K. Tracking the effect of sodium insertion/extraction in amorphous and anatase TiO2 nanotubes. J. Phys. Chem. C 2017, 121, 11773–11782.

    Article  CAS  Google Scholar 

  49. Ata-ur-Rehman; Ali, G.; Abbas, S. M.; Iftikhar, M.; Zahid, M.; Yaseen, S.; Saleem, S.; Haider, S.; Arshad, M.; Badshah, A. Axial expansion of Ni-doped TiO2 nanorods grown on carbon nanotubes for favourable lithium-ion intercalation. Chem. Eng. J. 2019, 375, 122021.

    Article  CAS  Google Scholar 

  50. Yadav, A. K.; Haque, S. M.; De, R.; Ahmed, M. A.; Srihari, V.; Gupta, M.; Phase, D. M.; Bandyopadhyay, S.; Jha, S. N.; Bhattacharyya, D. Local structure investigation of Mn- and Co-doped TiO2 thin films by X-ray absorption spectroscopy. ChemistrySelect 2017, 2, 11012–11024.

    Article  CAS  Google Scholar 

  51. El Koura, Z.; Rossi, G.; Calizzi, M.; Amidani, L.; Pasquini, L.; Miotello, A.; Boscherini, F. XANES study of vanadium and nitrogen dopants in photocatalytic TiO2 thin films. Phys. Chem. Chem. Phys. 2018, 20, 221–231.

    Article  CAS  Google Scholar 

  52. Peng, X.; Chen, L.; Liu, Y. F.; Liu, C.; Huang, H. L.; Fan, J. B.; Xiong, P.; Zhu, J. W. Strain engineering of two-dimensional materials for energy storage and conversion applications. Chem. Synth. 2023, 3, 47.

    Article  CAS  Google Scholar 

  53. Ju, Z. Y.; Zhang, X.; Wu, J. Y.; King, S. T.; Chang, C. C.; Yan, S.; Xue, Y.; Takeuchi, K. J.; Marschilok, A. C.; Wang, L. et al. Tortuosity engineering for improved charge storage kinetics in high-areal-capacity battery electrodes. Nano Lett. 2022, 22, 6700–6708.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, K. Q.; Xu, W. H.; Zhang, W.; Wang, X.; Yang, X.; Li, J. F.; Zhang, H. L.; Li, J. J.; Wang, Z. K. Bio-inspired water-driven electricity generators: From fundamental mechanisms to practical applications. Nano Res. Energy 2023, 2, e9120042.

    Article  Google Scholar 

  55. Dao, V. D.; Vu, N. H.; Thi Dang, H. L.; Yun, S. N. Recent advances and challenges for water evaporation-induced electricity toward applications. Nano Energy 2021, 85, 105979.

    Article  CAS  Google Scholar 

  56. Zhang, Z. H.; Li, X. M.; Yin, J.; Xu, Y.; Fei, W. W.; Xue, M. M.; Wang, Q.; Zhou, J. X.; Guo, W. L. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109–1119.

    Article  CAS  PubMed  Google Scholar 

  57. Wu, M.; Peng, M. W.; Liang, Z. Q.; Liu, Y. L.; Zhao, B.; Li, D.; Wang, Y. W.; Zhang, J. C.; Sun, Y. H.; Jiang, L. Printed honeycomb-structured reduced graphene oxide film for efficient and continuous evaporation-driven electricity generation from salt solution. ACS Appl. Mater. Interfaces 2021, 13, 26989–26997.

    Article  CAS  PubMed  Google Scholar 

  58. García-García, R.; García, R. E. Microstructural effects on the average properties in porous battery electrodes. J. Power Sources 2016, 309, 11–19.

    Article  Google Scholar 

  59. Ebner, M.; Chung, D. W.; García, R. E.; Wood, V. Tortuosity anisotropy in lithium-ion battery electrodes. Adv. Energy Mater. 2014, 4, 1301278.

    Article  Google Scholar 

  60. Li, S.; Fan, Z. D.; Wu, G. Q.; Shao, Y. Y.; Xia, Z.; Wei, C. H.; Shen, F.; Tong, X. L.; Yu, J. C.; Chen, K. et al. Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS Nano 2021, 15, 7821–7832.

    Article  CAS  PubMed  Google Scholar 

  61. Wang, Y.; Lian, T. T.; Tarakina, N. V.; Yuan, J. Y.; Antonietti, M. Lamellar carbon nitride membrane for enhanced ion sieving and water desalination. Nat. Commun. 2022, 13, 7339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chi, J. G.; Liu, C. R.; Che, L. F.; Li, D. J.; Fan, K.; Li, Q.; Yang, W. H.; Dong, L. X.; Wang, G. F.; Wang, Z. L. Harvesting water-evaporation-induced electricity based on liquid–solid triboelectric nanogenerator. Adv. Sci. (Weinh.) 2022, 9, e2201586.

    PubMed  Google Scholar 

  63. Hu, Q. C.; Ma, Y. J.; Ren, G. P.; Zhang, B. T.; Zhou, S. G. Water evaporation-induced electricity with Geobacter sulfurreducens biofilms. Sci. Adv. 2022, 8, eabm8047.

    Article  Google Scholar 

  64. Hällström, L.; Koskinen, T.; Tossi, C.; Juntunen, T.; Tittonen, I. Multiphysics simulation explaining the behaviour of evaporation-driven nanoporous generators. Energy Convers. Manag. 2022, 256, 115382.

    Article  Google Scholar 

  65. Rehman, M. M. U.; Nagayama, G. Contribution of solid–liquid–vapor interface to droplet evaporation. Colloid Surf. A: Physicochem. Eng. Asp. 2023, 656, 130419.

    Article  CAS  Google Scholar 

  66. Li, S.; Zhang, Q. Ionic gelatin thermoelectric generators. Joule 2020, 4, 1628–1629.

    Article  Google Scholar 

  67. Li, L. H.; Feng, S. J.; Bai, Y. Y.; Yang, X. Q.; Liu, M. Y.; Hao, M. M.; Wang, S. Q.; Wu, Y.; Sun, F. Q.; Liu, Z. et al. Enhancing hydrovoltaic power generation through heat conduction effects. Nat. Commun. 2022, 13, 1043.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sun, Z. N.; Zhang, W. L.; Guo, J. C.; Song, J. N.; Deng, X. Is heat really beneficial to water evaporation-driven electricity. J. Phys. Chem. Lett. 2021, 12, 12370–12375.

    Article  CAS  PubMed  Google Scholar 

  69. Shao, B. B.; Wu, Y. F.; Song, Z. H.; Yang, H. W.; Chen, X.; Zou, Y. T.; Zang, J. Q.; Yang, F.; Song, T.; Wang, Y. S. et al. Freestanding silicon nanowires mesh for efficient electricity generation from evaporation-induced water capillary flow. Nano Energy 2022, 94, 106917.

    Article  CAS  Google Scholar 

  70. Xu, T.; Ding, X. T.; Shao, C. X.; Song, L.; Lin, T. Y.; Gao, X.; Xue, J. L.; Zhang, Z. P.; Qu, L. T. Electric power generation through the direct interaction of pristine graphene–oxide with water molecules. Small 2018, 14, 1704473.

    Article  Google Scholar 

  71. Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S. N.; Zheng, J. X.; Yang, Z. L. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 2021, 600, 81–85

    Article  CAS  PubMed  Google Scholar 

  72. Hu, Q. C.; Ouyang, S. L.; Li, J.; Cao, Z. Raman spectroscopic investigation on pure D2O/H2O from 303 to 573 K: Interpretation and implications for water structure. J. Raman Spectrosc. 2017, 48, 610–617.

    Article  CAS  Google Scholar 

  73. Gao, X.; Wang, Q.; Sun, G.; Li, C. X.; Hu, L. Vibrational features of confined water in nanoporous TiO2 by Raman spectra. Chin. Phys. B 2016, 25, 026801.

    Article  Google Scholar 

  74. Kang, Y. C.; Zhang, F.; Li, H. Z.; Wei, W. R.; Dong, H. T.; Chen, H.; Sang, Y. H.; Liu, H.; Wang, S. H. Modulating the electrolyte inner solvation structure via low polarity co-solvent for low-temperature aqueous zinc-ion batteries. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12707.

  75. Wang, Z. Y.; Huang, Y. C.; Zhang, T. S.; Xu, K. Q.; Liu, X. L.; Zhang, A. R.; Xu, Y.; Zhou, X.; Dai, J. W.; Jiang, Z. N. et al. Unipolar solution flow in calcium-organic frameworks for seawater-evaporation-induced electricity generation. J. Am. Chem. Soc. 2024, 146, 1690–1700.

    Article  CAS  Google Scholar 

  76. Li, J.; Liu, K.; Ding, T. P.; Yang, P. H.; Duan, J. J.; Zhou, J. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy 2019, 58, 797–802.

    Article  CAS  Google Scholar 

  77. Shen, H. J.; Shen, X.; Wu, Z. H. Simulating the isotropic Raman spectra of O–H stretching mode in liquid H2O based on a machine learning potential: The influence of vibrational couplings. Phys. Chem. Chem. Phys. 2023, 25, 28180–28188.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22179062, 52125202, and U2004209), the Natural Science Foundation of Jiangsu Province (No. BK2023010081), and Fundamental Research Funds for the Central Universities (No. 30922010303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pan Xiong or Junwu Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liu, C., Ni, A. et al. Tortuosity regulation of two-dimensional nanofluidic films for water evaporation-induced electricity generation. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6642-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6642-1

Keywords

Navigation