Skip to main content
Log in

An arch-shape wood evaporator decorated by metal-organic framework for solar interface evaporation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To achieve sustainable desalination and water purification, solar interface evaporation technology is an effective means due to its high energy efficiency. Reasonable photothermal conversion materials and surface design are crucial for the interfacial solar evaporation process. How to design water transport routes and thermal insulating layers simultaneously is one of the major challenges to solar interface evaporation technology today. Herein, this work reports an arch-shaped wood evaporator (pine@carbon black (CB)-metal-organic framework-801 (MOF-801)-36%) for efficient, fast and continuous interfacial solar evaporation, which is composed of an arch-shaped wood substrate, MOF-801, and CB as a light absorption layer. The arch-shaped structure has a double-sided evaporation effect, which has a synergistic effect on augmenting solar evaporation efficiency. In addition, the in-situ growth of MOF-801 in pretreated wood microchannels renders the wood evaporator a significant function of reducing the equivalent enthalpy of evaporation due to the reduction of the hydrogen bonding density of water molecules as they pass through the wood channels. The best evaporation rate of the arch-shaped wood evaporator can reach 2.535 kg·m−2·h−1, and the efficiency reaches 93.7% under the irradiation of 1 sun illumination. Notably, it could be used for desalination and wastewater treatment to collect fresh water that meets drinking requirements set by the World Health Organization (WHO). This integrated evaporator provides an efficient way for commercial portable photothermal conversion and new ideas for advanced solar-driven water treatment technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, Y. H.; Bae, J.; Fang, Z. W.; Li, P. P.; Zhao, F.; Yu, G. H. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 2020, 120, 7642–7707

    Article  CAS  PubMed  Google Scholar 

  2. Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072.

    Article  CAS  PubMed  Google Scholar 

  3. Vörösmarty, C. J.; Green, P.; Salisbury, J.; Lammers, R. B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288.

    Article  PubMed  Google Scholar 

  4. Mekonnen, M. M.; Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Macedonio, F.; Drioli, E.; Gusev, A. A.; Bardow, A.; Semiat, R.; Kurihara, M. Efficient technologies for worldwide clean water supply. Chem. Eng. Process. 2012, 51, 2–17.

    Article  CAS  Google Scholar 

  6. Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936.

    Article  PubMed  Google Scholar 

  7. Li, Z. T.; Wang, C. B.; Su, J. B.; Ling, S.; Wang, W.; An, M. Fastgrowing field of interfacial solar steam generation: Evolutional materials, engineered architectures, and synergistic applications. Solar RRL 2019, 3, 1800206.

    Article  Google Scholar 

  8. Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy 2019, 57, 507–518.

    Article  CAS  Google Scholar 

  9. Wu, X.; Wang, Y. D.; Wu, P.; Zhao, J. Y.; Lu, Y.; Yang, X. F.; Xu, H. L. Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 2021, 31, 2102618.

    Article  CAS  Google Scholar 

  10. Fang, Q. L.; Li, T. T.; Chen, Z. M.; Lin, H. B.; Wang, P.; Liu, F. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media. ACS Appl. Mater. Interfaces 2019, 11, 10672–10679.

    Article  CAS  PubMed  Google Scholar 

  11. Liao, Q. H.; Zhang, P. P.; Yao, H. Z.; Cheng, H. H.; Li, C.; Qu, L. T. Reduced graphene oxide-based spectrally selective absorber with an extremely low thermal emittance and high solar absorptance. Adv. Sci. 2020, 7, 1903125.

    Article  CAS  Google Scholar 

  12. Wang, C. B.; Xu, K. Y.; Shi, G. L.; Wei, D. Water skin effect and arched double-sided evaporation for boosting all-weather high salinity desalination. Adv. Energy Mater. 2023, 13, 2300134.

    Article  CAS  Google Scholar 

  13. Wang, Y. C.; Zhang, L. B.; Wang, P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chem. Eng. 2016, 4, 1223–1230.

    Article  CAS  Google Scholar 

  14. Li, S.; He, Y. Y.; Guan, Y. P.; Liu, X. Y.; Liu, H. X.; Xie, M. S.; Zhou, L.; Wei, C.; Yu, C. B.; Chen, Y. H. Cellulose nanofibril-stabilized pickering emulsion and in situ polymerization lead to hybrid aerogel for high-efficiency solar steam generation. ACS Appl. Polym. Mater. 2020, 2, 4581–4591.

    Article  CAS  Google Scholar 

  15. Li, T.; Liu, H.; Zhao, X. P.; Chen, G.; Dai, J. Q.; Pastel, G.; Jia, C.; Chen, C. J.; Hitz, E.; Siddhartha, D. et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport. Adv. Funct. Mater. 2018, 28, 1707134.

    Article  Google Scholar 

  16. Awad, F. S.; Kiriarachchi, H. D.; AbouZeid, K. M.; Ozgiir, TL; El-Shall, M. S. Plasmonic graphene polyurethane nanocomposites for efficient solar water desalination. ACS Appl. Energy Mater. 2018, 1, 976–985.

    Article  CAS  Google Scholar 

  17. Fan, D. Q.; Min, H. H.; Zhang, H.; Tang, Y. C.; Yang, X. F.; Lu, Y. Architecting a bifunctional solar evaporator of perovskite La0.5Sr0.5CoO3 for solar evaporation and degradation. J. Mater. Sci. 2021, 56, 18625–18635.

    Article  CAS  Google Scholar 

  18. Wu, X.; Robson, M. E.; Phelps, J. L.; Tan, J. S.; Shao, B.; Owens, G.; Xu, H. L. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation. Nano Energy 2019, 56, 708–715.

    Article  CAS  Google Scholar 

  19. Li, Z. T.; Zhang, J.; Zang, S. H.; Yang, C.; Liu, Y.; Jing, F.; Jing, H.; Hu, J. K.; Wang, C. B.; Zhou, Y. T. Engineering controllable water transport of biosafety cuttlefish juice solar absorber toward remarkably enhanced solar-driven gas-liquid interfacial evaporation. Nano Energy 2020, 73, 104834.

    Article  CAS  Google Scholar 

  20. Wang, C. B.; Wang, J. L.; Li, Z. T.; Xu, K. Y.; Lei, T.; Wang, W. K. Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency. J. Mater. Chem. A 2020, 8, 9528–9535.

    Article  CAS  Google Scholar 

  21. Park, S. H.; Park, J. H.; Kim, J.; Lee, S. J. Simultaneous solar-driven seawater desalination and spontaneous power generation using polyvalent crosslinked polypyrrole/alginate hydrogels. Desalination 2021, 500, 114900.

    Article  CAS  Google Scholar 

  22. Lu, Y.; Fan, D. Q.; Shen, Z. Y.; Zhang, H.; Xu, H. L.; Yang, X. F. Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions. Nano Energy 2022, 95, 107016.

    Article  CAS  Google Scholar 

  23. Wang, X. Z.; He, Y. R.; Liu, X.; Cheng, G.; Zhu, J. Q. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Appl. Energy 2017, 195, 414–425.

    Article  CAS  Google Scholar 

  24. Liu, Y. M.; Yu, S. T.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H. Z.; Shang, W.; Tao, P.; Song, C. Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 2015, 27, 2768–2774.

    Article  CAS  PubMed  Google Scholar 

  25. Hu, X. Z.; Xu, W. C.; Zhou, L.; Tan, Y. L.; Wang, Y.; Zhu, S. N.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 2017, 29, 1604031.

    Article  Google Scholar 

  26. Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953–13958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qu, M. N.; Yan, J. F.; Ge, J. W.; Zhao, Y.; Xue, Y. Y.; Liu, X. F.; Liu, H.; Yan, M.; He, J. M. Nature- inspired wood-based solar evaporation system for efficient desalination and water purification. J. Mater. Sci. 2023, 58, 6220–6236.

    Article  CAS  Google Scholar 

  28. Zhang, T.; Yan, W.; Wang, Y.; Wang, J.; Liu, C. Y.; Ye, F.; Liu, B. An ecofriendly and efficient wood-based polyoxovanadate solar evaporation generator. Sci. China Mater. 2023, 66, 3292–3299.

    Article  CAS  Google Scholar 

  29. Jiang, D. X.; Dai, Y. H.; Jiang, Y. W.; Yu, W. Q.; Ma, D. Y.; Bai, L.; Huo, P. F.; Li, Z. G.; Liu, Y. Polydopamine/Fe304 modified wood-based evaporator for efficient and continuous water purification. J. Colloid Interface Sci. 2023, 652, 1271–1281.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, R.; Zhou, Y. W.; Xiang, B.; Zeng, X. J.; Luo, Y. L.; Meng, X. K.; Tang, S. C. Scalable carbon black enhanced nanofiber network films for high-efficiency solar steam generation. Adv. Mater. Interfaces 2021, 8, 2101160.

    Article  CAS  Google Scholar 

  31. Li, H. D.; Aizudin, M.; Yang, S. Q.; Guo, Z. J.; Yang, J.; Yang, F.; Ang, E. H.; Pan, J. M. Optimizing coupling effect of confined FeNi nanoalloys within graphitic carbon nanofibers to improve photothermal energy conversion efficiency for solar water purification. Sep. Purif. Technol. 2023, 326, 124802.

    Article  CAS  Google Scholar 

  32. Wang, M. M.; Wang, P.; Zhang, J.; Li, C. P.; Jin, Y. D. A ternary Pt/Au/TiO2-decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline. ChemSusChem 2019, 12, 467–472.

    Article  CAS  PubMed  Google Scholar 

  33. Hou, Q.; Zhou, H. Y.; Zhang, W.; Chang, Q.; Yang, J. L.; Xue, C. R.; Hu, S. L. Boosting adsorption of heavy metal ions in wastewater through solar-driven interfacial evaporation of chemically-treated carbonized wood. Sci. Total Environ. 2021, 759, 144317.

    Article  CAS  PubMed  Google Scholar 

  34. Huang, W.; Hu, G. Y.; Tian, C.; Wang, X. H.; Tu, J. C.; Cao, Y.; Zhang, K. X. Nature- inspired salt resistant polypyrrole-wood for highly efficient solar steam generation. Sustainable Energy Fuels 2019, 3, 3000–3008.

    Article  CAS  Google Scholar 

  35. Wang, Y. G.; Yu, R. B. Investigation of the catalytic effect of defective Ni-MOF-74 on polymerization of dopamine and multi-pore polydopamine photothermal coating constructed with defective Ni-MOF-74 particles. J. Environ. Chem. Eng. 2023, 11, 110422.

    Article  CAS  Google Scholar 

  36. Su, L. F.; Liu, X. Y.; Xia, W.; Wu, B.; Li, C. J.; Xu, B.; Yang, B.; Xia, R.; Zhou, J. H.; Qian, J. S. et al. Simultaneous photothermal and photocatalytic MOF- derived C/TiO2 composites for high-efficiency solar driven purification of sewage. J. Colloid Interface Sci. 2023, 650, 613–621.

    Article  CAS  PubMed  Google Scholar 

  37. Xiao, J. D.; Jiang, H. L. Metal- organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

    Article  CAS  PubMed  Google Scholar 

  38. Liu, H. W.; Jin, R. Z.; Duan, S. C.; Ju, Y. J.; Wang, Z. Y.; Yang, K.; Wang, B. D.; Wang, B.; Yao, Y. G.; Chen, F. J. Anisoroopic evaporator with a T-shape design for high-performance solar-driven zero-liquid discharge. Small 2021, 17, 2100969.

    Article  CAS  Google Scholar 

  39. Finnerty, C.; Zhang, L.; Sedlak, D. L.; Nelson, K. L.; Mi, B. X. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge. Environ. Sci. Technol. 2017, 51, 11701–11709.

    Article  CAS  PubMed  Google Scholar 

  40. Jin, Y.; Chang, J.; Shi, Y.; Shi, L.; Hong, S.; Wang, P. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation. J. Mater. Chem. A 2018, 6, 7942–7949.

    Article  CAS  Google Scholar 

  41. Zhang, Y. X.; Ravi, S. K.; Tan, S. C. Systematic study of the effects of system geometry and ambient conditions on solar steam generation for evaporation optimization. Adv. Sustain. Syst. 2019, 3, 1900044.

    Article  CAS  Google Scholar 

  42. Kou, H.; Liu, Z. X.; Zhu, B.; Macharia, D. K.; Ahmed, S.; Wu, B. H.; Zhu, M. F.; Liu, X. G.; Chen, Z. G. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight. Desalination 2019, 462, 29–38.

    Article  CAS  Google Scholar 

  43. Xu, J. X.; Li, T. X.; Chao, J. W.; Wu, S.; Yan, T. S.; Li, W. C.; Cao, B. Y.; Wang, R. Z. Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt. Angew. Chem., Int. Ed. 2020, 59, 5202–5210.

    Article  CAS  Google Scholar 

  44. Štefaníková, R.; Kretková, T.; Kuzminova, A.; Hanuš, J.; Vaidulych, M.; Kylián, O.; Biederman, H. Influence of atmospheric pressure dielectric barrier discharge on wettability and drying of poly(ether-ether-ketone) foils. Polym. Degrad. Stab. 2018, 150, 114–121.

    Article  Google Scholar 

  45. Kusano, Y.; Mortensen, H.; Stenum, B.; Goutianos, S.; Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.; Sørensen, B. F.; Bindslev, H. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement. Int. J. Adhes. Adhes. 2007, 27, 402–408.

    Article  CAS  Google Scholar 

  46. Zhang, H. X.; Wei, L. Preparation, performance and analysis of carbon fibers with dielectric barrier discharges plasma surface treatment. Adv. Mater. Res. 2011, 391–392, 8–12

    Google Scholar 

  47. Kurisingal, J. F.; Li, Y. X.; Sagynbayeva, Y.; Chitumalla, R. K.; Vuppala, S.; Rachuri, Y.; Gu, Y. J.; Jang, J.; Park, D. W. Porous aluminum-based DUT metal-organic frameworks for the transformation of CO2 into cyclic carbonates: A computationally supported study. Catal. Today 2020, 352, 227–236.

    Article  Google Scholar 

  48. Jeong, H. M.; Roshan, R.; Babu, R.; Kim, H. J.; Park, D. W. Zirconium-based isoreticular metal-organic frameworks for CO2 fixation via cyclic carbonate synthesis. Korean J. Chem. Eng. 2018, 35, 438–444.

    Article  CAS  Google Scholar 

  49. Azevedo, R. S. S.; de Sousa, J. R.; Araujo, M. T. F.; Filho, A. J. M.; de Alcantara, B. N.; Araujo, F. M. C.; Queiroz, M. G. L.; Cruz, A. C. R.; Vasconcelos, B. H. B.; Chiang, J. O. et al. In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus. Sci. Rep. 2018, 8, 1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Furukawa, H.; Gándara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369–4381.

    Article  CAS  PubMed  Google Scholar 

  51. Jahan, I.; Islam, M. A.; Rupam, T. H.; Palash, M. L.; Rocky, K. A.; Saha, B. B. Enhanced water sorption onto bimetallic MOF-801 for energy conversion applications. Sustain. Mater. Techno. 2022, 32, e00442.

    CAS  Google Scholar 

  52. Chen, S.; Sun, Z. Y.; Xiang, W. L.; Shen, C. Y.; Wang, Z. Y.; Jia, X. Y.; Sun, J.; Liu, C. J. Plasmonic wooden flower for highly efficient solar vapor generation. Nano Energy 2020, 76, 104998.

    Article  CAS  Google Scholar 

  53. Li, L. X.; Zhang, J. P. Highly salt-resistant and all-weather solar-driven interfacial evaporators with photothermal and electrothermal effects based on Janus graphene@silicone sponges. Nano Energy 2021, 81, 105682.

    Article  CAS  Google Scholar 

  54. Ding, T. P.; Zhou, Y.; Ong, W. L.; Ho, G. W. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 2021, 42, 178–191.

    Article  CAS  Google Scholar 

  55. Shao, B.; Wang, Y. D.; Wu, X.; Lu, Y.; Yang, X. F.; Chen, G. Y.; Owens, G.; Xu, H. L. Stackable nickel-cobalt@polydopamine nanosheet based photothermal sponges for highly efficient solar steam generation. J. Mater. Chem. A 2020, 8, 11665–11673.

    Article  CAS  Google Scholar 

  56. Yu, H. M.; Wang, D. Y.; Jin, H. Y.; Wu, P.; Wu, X.; Chu, D. W.; Lu, Y.; Yang, X. F.; Xu, H. L. 2D MoN1.2-rGO stacked heterostructures enabled water state modification for highly efficient interfacial solar evaporation. Adv. Funct. Mater. 2023, 33, 2214828.

    Article  CAS  Google Scholar 

  57. Sun, Q. The Raman OH stretching bands of liquid water. Vib. Spectrosc. 2009, 51, 213–217.

    Article  CAS  Google Scholar 

  58. Sekine, Y.; Ikeda-Fukazawa, T. Structural changes of water in a hydrogel during dehydration. J. Chem. Phys. 2009, 130, 034501.

    Article  PubMed  Google Scholar 

  59. Liu, N.; Hao, L.; Zhang, B. Y.; Niu, R.; Gong, J.; Tang, T. Rational design of high-performance bilayer solar evaporator by using waste polyester-derived porous carbon-coated wood. Energy Environ. Mater. 2022, 5, 617–626.

    Article  CAS  Google Scholar 

  60. Le Botlan, D.; Rugraff, Y.; Martin, C.; Colonna, P. Quantitative determination of bound water in wheat starch by time domain NMR spectroscopy. Carbohydr. Res. 1998, 308, 29–36.

    Article  CAS  Google Scholar 

  61. Zhang, Q.; Yang, H. J.; Xiao, X. F.; Wang, H.; Yan, L.; Shi, Z. X.; Chen, Y. L.; Xu, W. L.; Wang, X. B. A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam. J. Mater. Chem. A 2019, 7, 14620–14628.

    Article  CAS  Google Scholar 

  62. Gibson, L. J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 2012, 9, 2749–2766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Choat, B.; Cobb, A. R.; Jansen, S. Structure and function of bordered pits: New discoveries and impacts on whole-plant hydraulic function. New Phytol. 2008, 177, 608–626.

    Article  PubMed  Google Scholar 

  64. Nardini, A.; Salleo, S.; Jansen, S. More than just a vulnerable pipeline: Xylem physiology in the light of ion-mediated regulation of plant water transport. J. Exp. Bot. 2011, 62, 4701–4718.

    Article  CAS  PubMed  Google Scholar 

  65. Sun, S. J.; Wang, Y. M.; Sun, B. B.; Zhang, F. F.; Xu, Q.; Mi, H. Y.; Li, H.; Tao, X. M.; Guo, Z. H.; Liu, C. T. et al. Versatile janus composite nonwoven solar absorbers with salt resistance for efficient wastewater purification and desalination. ACS Appl. Mater. Interfaces 2021, 13, 24945–24956.

    Article  CAS  PubMed  Google Scholar 

  66. Sun, S. J.; Tian, Q. L.; Mi, H. Y.; Li, J.; Jing, X.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Fabric- based all-weather-available photo-electro-thermal steam generator with high evaporation rate and salt resistance. Sci. China Mater. 2022, 65, 2479–2490.

    Article  CAS  Google Scholar 

  67. Sun, S. J.; Sun, B. B.; Wang, Y. M.; Antwi-Afari, M. F.; Mi, H. Y.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Carbon black and polydopamine modified non-woven fabric enabling efficient solar steam generation towards seawater desalination and wastewater purification. Sep. Purif. Technol. 2021, 278, 119621.

    Article  Google Scholar 

  68. World Health Organization. Guidelines for Drinking-Water Quality; 4th ed.; Geneva, 2011.

Download references

Acknowledgements

We gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (No. 22175094) and Independent Innovation of Agricultural Science and Technology in Jiangsu Province (No. CX(21)3163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Tian.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Zhao, L., Xu, Y. et al. An arch-shape wood evaporator decorated by metal-organic framework for solar interface evaporation. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6585-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6585-6

Keywords

Navigation