Skip to main content
Log in

Iron oxide/CNT-based artificial nacre for electromagnetic interference shielding

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Biological structural materials, despite consisting of limited kinds of compounds, display multifunctionalities due to their complex hierarchical architectures. While some biomimetic strategies have been applied in artificial materials to enhance their mechanical stability, the simultaneous optimization of other functions along with the mechanical properties via biomimetic designs has not been thoroughly investigated. Herein, iron oxide/carbon nanotube (CNT)-based artificial nacre with both improved mechanical and electromagnetic interference (EMI) shielding performance is fabricated via the mineralization of Fe3O4 onto a CNT-incorporated matrix. The micro- and nano-structures of the artificial nacre are similar to those of natural nacre, which in turn improves its mechanical properties. The alternating electromagnetic wave-reflective CNT layers and the wave-absorptive iron oxide layers can improve the multiple reflections of the waves on the surfaces of the reflection layers, which then allows sufficient interactions between the waves and the absorption layers. Consequently, compared with the reflection-dependent EMI-shielding of the non-structured material, the artificial nacre exhibits strong absorption-dependent shielding behavior even with a very low content of wave-absorptive phase. Owing to the high mechanical stability, the shielding effectiveness of the artificial nacre that deeply cut by a blade is still maintained at approximately 70%–96% depending on the incident wave frequency. The present work provides a new way for designing structural materials with concurrently enhanced mechanical and functional properties, and a path to combine structural design and intrinsic properties of specific materials via a biomimetic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, T. X.; Xiong, C. Y.; Zhang, Y. K.; Wang, B.; Xiong, Q.; Zhao, M. J.; Ni, Y. H. Multi-layer hierarchical cellulose nanofibers/carbon nanotubes/vinasse activated carbon composite materials for supercapacitors and electromagnetic interference shielding. Nano Res. 2024, 17, 904–912.

    Article  CAS  Google Scholar 

  3. Xiong, C. Y.; Wang, T. X.; Zhou, L. F.; Zhang, Y. K.; Dai, L.; Zhou, Q. S.; Ni, Y. H. Fabrication of dual-function conductive cellulose-based composites with layered conductive network structures for supercapacitors and electromagnetic shielding. Chem. Eng. J. 2023, 472, 144958.

    Article  CAS  Google Scholar 

  4. Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. B. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860.

    Article  CAS  Google Scholar 

  5. Lu, L. L.; Lu, Y. Y.; Xiao, Z. J.; Zhang, T. W.; Zhou, F.; Ma, T.; Ni, Y.; Yao, H. B.; Yu, S. H.; Cui, Y. Wood-inspired high-performance ultrathick bulk battery electrodes. Adv. Mater. 2018, 30, 1706745.

    Article  Google Scholar 

  6. Sander, J. S.; Erb, R. M.; Li, L.; Gurijala, A.; Chiang, Y. M. High-performance battery electrodes via magnetic templating. Nat. Energy 2016, 1, 16099.

    Article  CAS  Google Scholar 

  7. Billaud, J.; Bouville, F.; Magrini, T.; Villevieille, C.; Studart, A. R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 2016, 1, 16097.

    Article  CAS  Google Scholar 

  8. Bakkar, S.; Thapliyal, S.; Ku, N.; Berman, D.; Aouadi, S. M.; Brennan, R. E.; Young, M. L. Controlling anisotropy of porous B4C structures through magnetic field-assisted freeze-casting. Ceram. Int. 2022, 48, 6750–6757.

    Article  CAS  Google Scholar 

  9. Le Ferrand, H.; Bouville, F.; Niebel, T. P.; Studart, A. R. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nat. Mater. 2015, 14, 1172–1179.

    Article  CAS  PubMed  Google Scholar 

  10. Yin, L.; Hannard, F.; Barthelat, F. rmact—resistant nacre-like transparent materials. Science 2019, 364, 1260–1263.

    Article  CAS  PubMed  Google Scholar 

  11. Raut, H. K.; Schwartzman, A. F.; Das, R.; Liu, F.; Wang, L. F.; Ross, C. A.; Fernandez, J. G. Tough and strong: Cross-lamella design imparts multifunctionality to biomimetic nacre. ACS Nano 2020, 14, 9771–9779.

    Article  CAS  PubMed  Google Scholar 

  12. Meng, Y. F.; Zhu, Y. B.; Zhou, L. C.; Meng, X. S.; Yang, Y. L.; Zhao, R.; Xia, J.; Yang, B.; Lu, Y. J.; Wu, H. A. et al. Artificial nacre with high toughness amplification factor: Residual stress-engineering sparks enhanced extrinsic toughening mechanisms. Adv. Mater. 2022, 34, 2108267.

    Article  CAS  Google Scholar 

  13. Mao, L. B.; Meng, Y. F.; Meng, X. S.; Yang, B.; Yang, Y. L.; Lu, Y. J.; Yang, Z. Y.; Shang, L. M.; Yu, S. H. Matrix-directed mineralization for bulk structural materials. J. Am. Chem. Soc. 2022, 144, 18175–18194.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, L. N.; Meng, Y. F.; Feng, Y. H. Z.; Wang, H. C.; Mao, L. B.; Yu, S. H.; Wang, Z. L. Amorphous precursor-mediated calcium phosphate coatings with tunable microstructures for customized bone implants. Adv. Healthc. Mater. 2022, 11, 2201248.

    Article  CAS  Google Scholar 

  15. Meng, Y. F.; Yu, C. X.; Zhou, L. C.; Shang, L. M.; Yang, B.; Wang, Q. Y.; Meng, X. S.; Mao, L. B.; Yu, S. H. Nanograded artificial nacre with efficient energy dissipation. Innovation 2023, 4, 100505.

    PubMed  PubMed Central  Google Scholar 

  16. Wan, S. J.; Li, X.; Chen, Y.; Liu, N. N.; Dou, S. X.; Jiang, L.; Cheng, Q. F. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, H. G.; Lu, R. J.; Yan, J.; Peng, J. S.; Tomsia, A. P.; Liang, R.; Sun, G. X.; Liu, M. J.; Jiang, L.; Cheng, Q. F. Tough and conductive nacre-inspired MXene/epoxy layered bulk nanocomposites. Angew. Chem., Int. Ed. 2023, 62, e202216874.

    Article  CAS  Google Scholar 

  18. Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

    Article  CAS  PubMed  Google Scholar 

  19. Fu, H.; Bai, Y. A.; Duan, S. Q.; Zhou, H. F.; Gong, W. Structure design of multi-layered ABS/CNTs composite foams for EMI shielding application with low reflection and high absorption characteristics. Appl. Surf. Sci. 2023, 624, 157168.

    Article  CAS  Google Scholar 

  20. Yang, Y. F.; Li, B.; Wu, N.; Liu, W.; Zhao, S. Y.; Zhang, C. F. J.; Liu, J. R.; Zeng, Z. H. Biomimetic porous MXene-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Mater. Lett. 2022, 4, 2352–2361.

    Article  CAS  Google Scholar 

  21. Yang, Y. F.; Wu, N.; Li, B.; Liu, W.; Pan, F.; Zeng, Z. H.; Liu, J. R. Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 2022, 16, 15042–15052.

    Article  CAS  PubMed  Google Scholar 

  22. Wei, J. J.; Zhu, C. L.; Zeng, Z. H.; Pan, F.; Wan, F. Q.; Lei, L. W.; Nyström, G.; Fu, Z. Y. Bioinspired cellulose-integrated MXene-based hydrogels for multifunctional sensing and electromagnetic interference shielding. Interdiscip. Mater. 2022, 1, 495–506.

    Article  CAS  Google Scholar 

  23. Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

    Article  CAS  Google Scholar 

  24. Wang, Y. L.; Li, B. Q.; Zhou, Y.; Jia, D. C. In situ mineralization of magnetite nanoparticles in chitosan hydrogel. Nanoscale Res. Lett. 2009, 4, 1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chaunchaiyakul, S.; Yano, T.; Khoklang, K.; Krukowski, P.; Akai-Kasaya, M.; Saito, A.; Kuwahara, Y. Nanoscale analysis of multiwalled carbon nanotube by tip-enhanced Raman spectroscopy. Carbon 2016, 99, 642–648.

    Article  CAS  Google Scholar 

  26. Laudenbach, J.; Schmid, D.; Herziger, F.; Hennrich, F.; Kappes, M.; Muoth, M.; Haluska, M.; Hof, F.; Backes, C.; Hauke, F.; et al. Diameter dependence of the defect-induced Raman modes in functionalized carbon nanotubes. Carbon 2017, 112, 1–7.

    Article  CAS  Google Scholar 

  27. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  CAS  PubMed  Google Scholar 

  28. Stubrov, Y.; Nikolenko, A.; Gubanov, V.; Strelchuk, V. Manifestation of structure of electron bands in double-resonant Raman spectra of single-walled carbon nanotubes. Nanoscale Res. Lett. 2016, 11, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xiao, W. C.; Gu, H. C.; Li, D.; Chen, D. D.; Deng, X. Y.; Jiao, Z.; Lin, J. Microwave- assisted synthesis of magnetite nanoparticles for MR blood pool contrast agents. J. Magn. Magn. Mater. 2012, 324, 488–494.

    Article  CAS  Google Scholar 

  30. Hanesch, M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 2009, 177, 941–948.

    Article  CAS  Google Scholar 

  31. Sun, W. B.; Han, Z. M.; Yue, X.; Zhang, H. Y.; Yang, K. P.; Liu, Z. X.; Li, D. H.; Zhao, Y. X.; Ling, Z. C.; Yang, H. B. et al. Nacre-inspired bacterial cellulose/mica nanopaper with excellent mechanical and electrical insulating properties by biosynthesis. Adv. Mater. 2023, 35, 2300241.

    Article  CAS  Google Scholar 

  32. Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

    Article  CAS  PubMed  Google Scholar 

  33. Al-Saleh, M. H.; Saadeh, W. H.; Sundararaj, U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study. Carbon 2013, 60, 146–156.

    Article  CAS  Google Scholar 

  34. Chung, D. D. L. Materials for electromagnetic interference shielding. Mater. Chem. Phys. 2020, 255, 123587.

    Article  CAS  Google Scholar 

  35. Yan, D. X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P. G.; Wang, J. H.; Li, Z. M. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559–566.

    Article  CAS  Google Scholar 

  36. Zhao, H.; Yun, J.; Zhang, Y. L.; Ruan, K. P.; Huang, Y. S.; Zheng, Y. P.; Chen, L. X.; Gu, J. W. Peessuee-induced self-interlocked structures for expanded graphite composite papers achieving prominent EMI shielding effectiveness and outstanding thermal conductivities. ACS Appl. Mater. Interfaces 2022, 14, 3233–3243.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou, T. Z.; Cao, C.; Yuan, S. X.; Wang, Z.; Zhu, Q.; Zhang, H.; Yan, J.; Liu, F.; Xiong, T.; Cheng, Q. F. et al. Interlocking-governed ultra-strong and highly conductive MXene fibers through fluidics-assisted thermal drawing. Adv. Mater. 2023, 35, 2305807.

    Article  CAS  Google Scholar 

  38. Zhuang, Z. T.; Chen, H. W.; Li, C. Robust pristine MXene films with superhigh electromagnetic interference shielding effectiveness via spatially confined evaporation. ACS Nano 2023, 17, 10628–10636.

    Article  CAS  PubMed  Google Scholar 

  39. Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

    Article  Google Scholar 

  40. Chung, D. D. L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001, 39, 279–285.

    Article  CAS  Google Scholar 

  41. Chung, D. D. L.; Ozturk, M. Electromagnetic skin depth of cement paste and its thickness dependence. J. Build. Eng. 2022, 52, 104393.

    Article  Google Scholar 

  42. Ahmad, H. S.; Hussain, T.; Nawab, Y.; Salamat, S. Effect of dielectric and magnetic nanofillers on electromagnetic interference shielding effectiveness of carbon/epoxy composites. J. Compos. Mater. 2022, 56, 69–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDB 0470303 and XDB 0450402), the National Key Research and Development Program of China (Nos. 2018YFE0202201 and 2021YFA0715700), the National Natural Science Foundation of China (Nos. 22293044, U1932213, and 22305240), and the New Cornerstone Investigator Program. Y.-F. M. acknowledges the Major Basic Research Project of Anhui Province (No. 2023z04020009) and the Double First-Class University Construction Fund from USTC (No. YD2060002037). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Bo Mao, Zhi-Kun Wu or Shu-Hong Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, CX., Meng, YF., Yang, B. et al. Iron oxide/CNT-based artificial nacre for electromagnetic interference shielding. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6567-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6567-7

Keywords

Navigation