Skip to main content
Log in

Synergistic enhancement of ultrasound therapy for tumors using hypoxia-activated 6-diazo-5-oxo-L-norleucine (DON) prodrug nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ultrasound (US) has been applied in clinical practice for its non-invasive and high selectivity. However, it is difficult to achieve a satisfactory anti-tumor effect with US alone. Meanwhile, the use of US therapy alone can exacerbate tumor hypoxia. In this study, we prepared hypoxia-activated 6-diazo-5-oxo-L-norleucine (DON) prodrug nanoparticles (HDON-NPs) to improve US therapeutic effects. In an H22 murine liver cancer model, US therapy selectively disrupted tumor blood vessels, leading to increased tumor hypoxia and a 1.67-fold increase in the expression of nitroreductase (NTR). The combination therapy of US and HDON-NPs demonstrated a synergistic effect, resulting in a tumor suppression rate (TSR) of 90.2% ± 6.4%, which was 5.93-fold higher than that of US therapy alone. The combined treatment selectively blocked the glutamine metabolism of the tumor cells while simultaneously activating the T cells in the tumor microenvironment, thereby exerting a robust anti-tumor effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, N. S.; Wang, J.; Foiret, J.; Dai, Z. F.; Ferrara, K. W. Synergies between therapeutic ultrasound, gene therapy and immunotherapy in cancer treatment. Adv. Drug Del. Rev. 2021, 178, 113906.

    Article  CAS  Google Scholar 

  2. Zhang, D.; Wang, X. Y.; Lin, J. J.; Xiong, Y. Q.; Lu, H. X.; Huang, J. Y.; Lou, X. Multi-frequency therapeutic ultrasound: A review. Ultrason. Sonochem. 2023, 100, 106608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deprez, J.; Lajoinie, G.; Engelen, Y.; De Smedt, S. C.; Lentacker, I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv. Drug Del. Rev. 2021, 172, 9–36.

    Article  CAS  Google Scholar 

  4. Yue, W. W.; Chen, L.; Yu, L. D.; Zhou, B. G.; Yin, H. H.; Ren, W. W.; Liu, C.; Guo, L. H.; Zhang, Y. F.; Sun, L. P. et al. Checkpoint blockade and nanosonosensitizeriaugmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat. Commun. 2019, 10, 2025.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Wu, R. R.; Yao, Z. C.; Chen, Z. X.; Ge, X. G.; Su, L. C.; Wang, S. H.; Wu, Y.; Song, J. B. Ultoasnund-activated NIR chemiluminescence for deep tissue and tumor foci imaging. Anal. Chem. 2023, 95, 11219–11226.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Z.; Li, B.; Xie, L. S.; Sang, W.; Tian, H.; Li, J.; Wang, G. H.; Dai, Y. L. Metali phenolic networkienabled lactic acid consumption reverses immunosuppressive tumor microenvironment for sonodynamic therapy. ACS Nano 2021, 15, 16934–16945.

    Article  CAS  PubMed  Google Scholar 

  7. Chaussy, C.; Thüroff, S.; Rebillard, X.; Gelet, A. Tcdinolggy insight: Highiintensity focused ultrasound for urologic cancers. Nat. Clin. Pract. Urol. 2005, 2, 191–198.

    Article  PubMed  Google Scholar 

  8. Guzman, M. L.; Rossi, R. M.; Karnischky, L.; Li, X. J.; Peterson, D. R.; Howard, D. S.; Jordan, C. T. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 2005, 105, 4163–4169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller, D. L.; Smith, N. B.; Bailey, M. R.; Czarnota, G. J.; Hynynen, K.; Makin, I. R. S. Overview of therapeutic ultrasound applications and safety considerations. J. Ultrasound Med. 2012, 31, 623–634.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rapoport, N. Y.; Kennedy, A. M.; Shea, J. E.; Scaife, C. L.; Nam, K. H. Controlled and targeted tumor chemotherapy by ultrasoundi activated nanoemulsions/microbubbles. J. Controlled Release 2009, 138, 268–276.

    Article  CAS  Google Scholar 

  11. Chen, Y. H.; Du, M.; Yuan, Z.; Chen, Z. Y.; Yan, F. Spatiotemporal control of engineered bacteria to express interferon-y by focused ultrasound for tumor immunotherapy. Nat. Commun. 2022, 13, 4468.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yumita, N.; Umemura, S. Sonodynamic therapy with photofrin II on AH130 solid tumor. Cancer Chemother. Pharmacol. 2003, 51, 174–178.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, D. W.; Lin, L.; Li, T.; Meng, M.; Hao, K.; Guo, Z. P.; Chen, J.; Tian, H. Y.; Chen, X. S. Etching bulk covalent organic frameworks into nanoparticles of uniform and controllable size by the molecular exchange etching method for sonodynamic and immune combination antitumor therapy. Adv. Mater. 2022, 34, 2205924.

    Article  CAS  Google Scholar 

  14. Hunt, S. J.; Gade, T.; Soulen, M. C.; Pickup, S.; Sehgal, C. M. Antivascular ultrasound therapy. J. Ultrasound Med. 2015, 34, 275–287.

    Article  PubMed  Google Scholar 

  15. Wood, A. K. W.; Ansaloni, S.; Ziemer, L. S.; Lee, W. M. F.; Feldman, M. D.; Sehgal, C. M. The antivascular action of physiotherapy ultrasound on murine tumors. Ultrasound Med. Biol. 2005, 31, 1403–1410.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li, C.; Yang, X. Q.; An, J.; Cheng, K.; Hou, X. L.; Zhang, X. S.; Hu, Y. G.; Liu, B.; Zhao, Y. D. Red blood cell membrane-enveloped O2 selfisupplementing biomimetic nanoparticles for tumor imagingi guided enhanced sonodynamic therapy. Teranoostics 2020, 10, 867–879.

    Article  CAS  Google Scholar 

  17. Vaupel, P.; Mayer, A.; Höckel, M. Tumor hypoxia and malignant progression. Methods Enzymol. 2004, 381, 335–354.

    Article  CAS  PubMed  Google Scholar 

  18. Cosse, J. P.; Michiels, C. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med. Chem. 2008, 8, 790–797.

    Article  CAS  PubMed  Google Scholar 

  19. Bai, R. X.; Li, Y. N.; Jian, L. Y.; Yang, Y. H.; Zhao, L.; Wei, M. J. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: Mechanisms and clinical treatment strategies. Mol. Cancer 2022, 21, 177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharma, A.; Arambula, J. F.; Koo, S.; Kumar, R.; Singh, H.; Sessler, J. L.; Kim, J. S. Hypoxia- targeted drug delivery. Chem. Soc. Rev. 2019, 48, 771–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, X. X.; Chen, S. Y.; Yi, N. B.; Li, X.; Chen, S. L.; Lei, Z. X.; Cheng, D. B.; Sun, T. L. Research progress on tumor hypoxia-associative nanomedicine. J. Controlled Release 2022, 350, 829–840.

    Article  CAS  Google Scholar 

  22. Chen, Y.; Hu, L. Q. Design of anticancer prodrugs for reductive activation. Med. Res. Rev. 2008, 29, 29–64.

    Article  CAS  Google Scholar 

  23. Singleton, D. C.; Macann, A.; Wilson, W. R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 2021, 18, 751–772.

    Article  PubMed  Google Scholar 

  24. Sun, J. L.; Liu, Z. L.; Yao, H. C.; Zhang, H. L.; Zheng, M. F.; Shen, N.; Cheng, J. J.; Tang, Z. H.; Chen, X. S. Azide-masked resiquimod activated by hypoxia for selective tumor therapy. Adv. Mater. 2023, 35, 2207733.

    Article  CAS  Google Scholar 

  25. Hay, M. P.; Gamage, S. A.; Kovacs, M. S.; Pruijn, F. B.; Anderson, R. F.; Patterson, A. V.; Wilson, W. R.; Brown, J. M.; Denny, W. A. Structure-activity relationships of 1,2,4-benzotriazine 1,4-dioxides as hypoxia-selective analogues of tirapazamine. J. Med. Chem. 2003, 46, 169–182.

    Article  CAS  PubMed  Google Scholar 

  26. Li, G.; Zhang, J. B.; Zhang, S. X.; Teng, L. S.; Sun, F. Y. Multifunctional nanoadjuvant-driven microenvironment modulation for enhanced photothermal immunotherapy in breast cancer. J. Controlled Release 2023, 362, 309–324.

    Article  CAS  Google Scholar 

  27. Zheng, M. F.; Xu, H.; Huang, Y.; Sun, J. L.; Zhang, H. L.; Lv, Z.; Liu, Z. L.; Tang, Z. H.; Chen, X. S. Hypoxia- activated glutamine antagonist prodrug combined with combretastatin A4 nanoparticles for tumor-selective metabolic blockade. J. Controlled Release 2024, 365, 480–490.

    Article  CAS  Google Scholar 

  28. Wise, D. R.; Ward, P. S.; Shay, J. E. S.; Cross, J. R.; Gruber, J. J.; Sachdeva, U. M.; Platt, J. M.; DeMatteo, R. G.; Simon, M. C.; Thompson, C. B. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. USA 2011, 108, 19611–19616.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Metallo, C. M.; Gameiro, P. A.; Bell, E. L.; Mattaini, K. R.; Yang, J. J.; Hiller, K.; Jewell, C. M.; Johnson, Z. R.; Irvine, D. J.; Guarente, L. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012, 481, 380–384.

    Article  ADS  CAS  Google Scholar 

  30. Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yoo, H. C.; Yu, Y. C.; Sung, Y.; Han, J. M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 2020, 52, 1496–1516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vander Heiden, M. G. Targeting cancer metabolism: A therapeutic window opens. Nat. Rev. Drug Discov. 2011, 10, 671–684.

    Article  CAS  PubMed  Google Scholar 

  33. Xiong, J.; Wang, N.; Zhong, H. J.; Cui, B. W.; Cheng, S.; Sun, R.; Chen, J. Y.; Xu, P. P.; Cai, G.; Wang, L. et al. SLC1A1 mediated glutamine addiction and contributed to natural killer T-cell lymphoma progression with immunotherapeutic potential. eBioMedicine 2021, 72, 103614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stine, Z. E.; Schug, Z. T.; Salvino, J. M.; Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 2022, 21, 141–162.

    Article  CAS  PubMed  Google Scholar 

  35. Reinfeld, B. I.; Madden, M. Z.; Wolf, M. M.; Chytil, A.; Bader, J. E.; Patterson, A. R.; Sugiura, A.; Cohen, A. S.; Ali, A.; Do, B. T. et al. Cell- programmed nutrient partitioning in the tumour microenvironment. Nature 2021, 593, 282–288.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, Y. Y.; Bai, C. S.; Ruan, Y. X.; Liu, M.; Chu, Q. Y.; Qiu, L.; Yang, C. Z.; Li, B. H. Coordinative metabolism of glutamine carbon and nitrogen in proliferating cancer cells under hypoxia. Nat. Commun. 2019, 10, 201.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. Jin, Z. J. About the evaluation of drug combination. Acta Pharmacol. Sin. 2004, 25, 146–147.

    CAS  PubMed  Google Scholar 

  38. Ma, Z. Y.; Zhang, Y. F.; Dai, X. X.; Zhang, W. Y.; Foda, M. F.; Zhang, J.; Zhao, Y. L.; Han, H. Y. Selective thrombosis of tumor for enhanced hypoxia-activated prodrug therapy. Adv. Mater. 2021, 33, 2104504.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of China (No. 2022YFE0110200), the Natural Science Foundation of Jilin Province (No. 20230101037JC), and the National Natural Science Foundation of China (Nos. 52203198 and 52025035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhilin Liu or Zhaohui Tang.

Electronic Supplementary Material

12274_2024_6534_MOESM1_ESM.pdf

Synergistic enhancement of ultrasound therapy for tumors using hypoxia-activated 6-diazo-5-oxo-L-norleucine (DON) prodrug nanoparticles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Liu, Z., Xu, H. et al. Synergistic enhancement of ultrasound therapy for tumors using hypoxia-activated 6-diazo-5-oxo-L-norleucine (DON) prodrug nanoparticles. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6534-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6534-4

Keywords

Navigation