Skip to main content
Log in

Constructing high coordination number of Ir–O–Ru bonds in IrRuOx nanomeshes for highly stable acidic oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

IrRu bimetallic oxides are recognized as the promising acidic oxygen evolution reaction (OER) catalysts, but breaking the tradeoff between their activity and stability is an unresolved question. Meanwhile, addressing the issues of mass transport obstruction of IrRu bimetallic oxides under high current remains a challenge for the development of proton exchange membrane water electrolysis (PEM-WE). Herein, we prepared an IrRuOx nanomeshes (IrRuOx NMs) with high coordination number (CN) of Ir–O–Ru bonds in a mixed molten salt with high solubility of the Ir/Ru precursor. X-ray absorption spectroscopy analysis revealed that the IrRuOx NMs possess high coordination number of Ir–O–Ru bonds (CNIr–O–Ru = 5.6) with a distance of 3.18 Å. Moreover, the nanomesh structures of IrRuOx NMs provided hierarchical channels to accelerate the transport of oxygen and water, thus further improving the electrochemical activity. Consequently, the IrRuOx NMs as OER catalysts can simultaneously achieve high activity and stability with low overpotential of 196 mV to reach 10 mA·cm−2 and slightly increase by 70 mV over 650 h test. Differential electrochemical mass spectrometry tests suggest that the preferred OER mechanism for IrRuOx NMs is the adsorbent evolution mechanism, which is beneficial for the robust structural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.

    Article  ADS  CAS  Google Scholar 

  2. Chong, L. N.; Gao, G. P.; Wen, J. G.; Li, H. X.; Xu, H. P.; Green, Z.; Sugar, J. D.; Kropf, A. J.; Xu, W. Q.; Lin, X. M. et al. La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis. Science 2023, 380, 609–616.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Zhang, Y.; Feng, B.; Yan, M. L.; Shen, Z.; Chen, Y. Q.; Tian, J. Y.; Xu, F. F.; Chen, G. H.; Wang, X. Z.; Yang, L. J. et al. Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high-performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities. Nano Res., in press, https://doi.org/10.1007/s12274-023-6303-9.

  4. Yu, C.; Huang, H. W.; Zhou, S.; Han, X. T.; Zhao, C. T.; Yang, J.; Li, S. F.; Guo, W.; An, B. W.; Zhao, J. J. et al. An electrocatalyst with anti-oxidized capability for overall water splitting. Nano Res. 2018, 11, 3411–3418.

    Article  CAS  Google Scholar 

  5. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

    Article  ADS  CAS  Google Scholar 

  6. Bernt, M.; Siebel, A.; Gasteiger, H. A. Analysis of voltage losses in PEM water electrolyzers with low platinum group metal loadings. J. Electrochem. Soc. 2018, 165, F305–F314.

    Article  CAS  Google Scholar 

  7. Xu, J.; Jin, H. Y.; Lu, T.; Li, J. S.; Liu, Y.; Davey, K.; Zheng, Y.; Qiao, S. Z. IrOx·nH2O with lattice water-assisted oxygen exchange for high-performance proton exchange membrane water electrolyzers. Sci. Adv. 2023, 9, eadh1718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi, Z. P.; Li, J.; Wang, Y. B.; Liu, S. W.; Zhu, J. B.; Yang, J. H.; Wang, X.; Ni, J.; Jiang, Z.; Zhang, L. J. et al. Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers. Nat. Commun. 2023, 14, 843.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bernt, M.; Hartig-Weiß, A.; Tovini, M. F.; El-Sayed, H. A.; Schramm, C.; Schröter, J.; Gebauer, C.; Gasteiger, H. A. Current challenges in catalyst development for PEM water electrolyzers. Chem. Ing. Tech. 2020, 92, 31–39.

    Article  CAS  Google Scholar 

  10. Lee, K.; Shim, J.; Jang, H. Y.; Lee, H. S.; Shin, H.; Lee, B. H.; Bootharaju, M. S.; Lee, K. S.; Lee, J.; Lee, S. et al. Modulating the valence electronic structure using earth-abundant aluminum for high-performance acidic oxygen evolution reaction. Chem 2023, 9, 3600–3612.

    Article  CAS  Google Scholar 

  11. Wang, X.; Qin, Z.; Qian, J. J.; Chen, L. Y.; Shen, K. IrCo nanoparticles encapsulated with carbon nanotubes for efficient and stable acidic water splitting. ACS Catal. 2023, 13, 10672–10682.

    Article  CAS  Google Scholar 

  12. Hao, S. Y.; Sheng, H. Y.; Liu, M.; Huang, J. Z.; Zheng, G. K.; Zhang, F.; Liu, X. N.; Su, Z. W.; Hu, J. J.; Qian, Y. et al. Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nat. Nanotechnol. 2021, 16, 1371–1377.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 2021, 33, 2004243.

    Article  CAS  Google Scholar 

  14. Zheng, X. B.; Yang, J. R.; Li, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Chen, S. H.; Zhuang, Z. C.; Lai, W. H.; Dou, S. X. et al. Ir–Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 2023, 9, eadi8025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wen, Y. Z.; Chen, P. N.; Wang, L.; Li, S. Y.; Wang, Z. Y.; Abed, J.; Mao, X. N.; Min, Y. M.; Dinh, C. T.; De Luna, P. et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 2021, 143, 6482–6490.

    Article  CAS  PubMed  Google Scholar 

  16. Zhuang, Z. W.; Wang, Y.; Xu, C. Q.; Liu, S. J.; Chen, C.; Peng, Q.; Zhuang, Z. B.; Xiao, H.; Pan, Y.; Lu, S. Q. et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 2019, 10, 4875.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. He, J.; Zhou, X.; Xu, P.; Sun, J. M. Regulating electron redistribution of intermetallic iridium oxide by incorporating Ru for efficient acidic water oxidation. Adv. Energy Mater. 2021, 11, 2102883.

    Article  CAS  Google Scholar 

  18. Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.

    Article  Google Scholar 

  19. Li, L. G.; Wang, P. T.; Cheng, Z. F.; Shao, Q.; Huang, X. Q. One-dimensional iridium-based nanowires for efficient water electrooxidation and beyond. Nano Res. 2022, 15, 1087–1093.

    Article  ADS  CAS  Google Scholar 

  20. Zhu, W. X.; Song, X. C.; Liao, F.; Huang, H.; Shao, Q.; Feng, K.; Zhou, Y. J.; Ma, M. J.; Wu, J.; Yang, H. et al. Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide. Nat. Commun. 2023, 14, 5365.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, H.; Zhang, Z.; Li, M. X.; Wang, Z. L.; Zhang, X. H.; Li, T. S.; Li, Y. P.; Tian, S. B.; Kuang, Y.; Sun, X. M. Iridium doped pyrochlore ruthenates for efficient and durable electrocatalytic oxygen evolution in acidic media. Small 2022, 18, 2202513.

    Article  CAS  Google Scholar 

  22. Wu, D. S.; Kusada, K.; Yoshioka, S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Chen, Y. N.; Seo, C.; Kim, J.; Song, C. et al. Efficient overall water splitting in acid with anisotropic metal nanosheets. Nat. Commun. 2021, 12, 1145.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, Y. F.; Lu, X. F.; Wu, Z. P.; Pei, Z. H.; Luan, D. Y.; Lou, X. W. Supporting trimetallic metal-organic frameworks on S/N-doped carbon macroporous fibers for highly efficient electrocatalytic oxygen evolution. Adv. Mater. 2023, 35, 2207888.

    Article  CAS  Google Scholar 

  24. Ge, J. J.; Wei, P.; Wu, G.; Liu, Y. D.; Yuan, T. W.; Li, Z. J.; Qu, Y. T.; Wu, Y. E.; Li, H.; Zhuang, Z. B. et al. Ultrathin palladium nanomesh for electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 3435–3438.

    Article  CAS  Google Scholar 

  25. Willinger, E.; Massué, C.; Schlögl, R.; Willinger, M. G. Identifying key structural features of IrOx water splitting catalysts. J. Am. Chem. Soc. 2017, 139, 12093–12101.

    Article  CAS  PubMed  Google Scholar 

  26. Liao, F.; Yin, K.; Ji, Y. J.; Zhu, W. X.; Fan, Z. L.; Li, Y. Y.; Zhong, J.; Shao, M. W.; Kang, Z. H.; Shao, Q. Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution. Nat. Commun. 2023, 14, 1248.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, X. Q.; Kolluru, V. S. C.; Xu, W. Q.; Wang, L. Q.; Chang, T. Y.; Chen, Y. S.; Yu, L.; Wen, J. G.; Chan, M. K. Y.; Chung, D. Y. et al. Discovery of chalcogenides structures and compositions using mixed fluxes. Nature 2022, 612, 72–77.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Yang, L.; Yu, G. T.; Ai, X.; Yan, W. S.; Duan, H. L.; Chen, W.; Li, X. T.; Wang, T.; Zhang, C. H.; Huang, X. R. et al. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 2018, 9, 5236.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan, Z. L.; Ji, Y. J.; Shao, Q.; Geng, S. Z.; Zhu, W. X.; Liu, Y.; Liao, F.; Hu, Z. W.; Chang, Y. C.; Pao, C. W. et al. Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide. Joule 2021, 5, 3221–3234.

    Article  CAS  Google Scholar 

  30. Laha, S.; Lee, Y.; Podjaski, F.; Weber, D.; Duppel, V.; Schoop, L. M.; Pielnhofer, F.; Scheurer, C.; Müller, K.; Starke, U. et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energy Mater. 2019, 9, 1803795.

    Article  Google Scholar 

  31. Cui, X. J.; Ren, P. J.; Ma, C.; Zhao, J.; Chen, R. X.; Chen, S. M.; Rajan, N. P.; Li, H. B.; Yu, L.; Tian, Z. Q. et al. Robust interface Ru centers for high-performance acidic oxygen evolution. Adv. Mater. 2020, 32, 1908126.

    Article  CAS  Google Scholar 

  32. Zhao, Z. L.; Wang, Q.; Huang, X.; Feng, Q.; Gu, S.; Zhang, Z.; Xu, H.; Zeng, L.; Gu, M.; Li, H. Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy Environ. Sci. 2020, 13, 5143–5151.

    Article  CAS  Google Scholar 

  33. Joo, J.; Park, Y.; Kim, J.; Kwon, T.; Jun, M.; Ahn, D.; Baik, H.; Jang, J. H.; Kim, J. Y.; Lee, K. Mn-dopant differentiating the Ru and Ir oxidation states in catalytic oxides toward durable oxygen evolution reaction in acidic electrolyte. Small Methods 2022, 6, 2101236.

    Article  CAS  Google Scholar 

  34. Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. Dang, Q.; Lin, H. P.; Fan, Z. L.; Ma, L.; Shao, Q.; Ji, Y. J.; Zheng, F. F.; Geng, S. Z.; Yang, S. Z.; Kong, N. N. et al. Iridium metallene oxide for acidic oxygen evolution catalysis. Nat. Commun. 2021, 12, 6007.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, N.; Cai, L.; Wang, C.; Lin, Y.; Huang, J. Z.; Sheng, H. Y.; Pan, H. B.; Zhang, W.; Ji, Q. Q.; Duan, H. L. et al. Identification of the active-layer structures for acidic oxygen evolution from 9R-BaIrO3 electrocatalyst with enhanced iridium mass activity. J. Am. Chem. Soc. 2021, 143, 18001–18009.

    Article  CAS  PubMed  Google Scholar 

  37. Gao, J. J.; Xu, C. Q.; Hung, S. F.; Liu, W.; Cai, W. Z.; Zeng, Z. P.; Jia, C. M.; Chen, H. M.; Xiao, H.; Li, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 2019, 141, 3014–3023.

    Article  CAS  PubMed  Google Scholar 

  38. Li, R.; Wang, H. Y.; Hu, F.; Chan, K. C.; Liu, X. J.; Lu, Z. P.; Wang, J.; Li, Z. B.; Zeng, L. J.; Li, Y. Y. et al. IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A·cm−2 in acidic media. Nat. Commun. 2021, 12, 3540.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun, W.; Ma, C. L.; Tian, X. L.; Liao, J. J.; Yang, J.; Ge, C. J.; Huang, W. W. An amorphous lanthanum-iridium solid solution with an open structure for efficient water splitting. J. Mater. Chem. A 2020, 8, 12518–12525.

    Article  CAS  Google Scholar 

  40. Cheng, Z. F.; Pi, Y. C.; Shao, Q.; Huang, X. Q. Boron-doped amorphous iridium oxide with ultrahigh mass activity for acidic oxygen evolution reaction. Sci. China Mater. 2021, 64, 2958–2966.

    Article  CAS  Google Scholar 

  41. Shan, J. Q.; Guo, C. X.; Zhu, Y. H.; Chen, S. M.; Song, L.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Charge-redistribution-enhanced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media. Chem. 2019, 5, 445–459.

    Article  CAS  Google Scholar 

  42. Meng, G.; Sun, W. M.; Mon, A. A.; Wu, X.; Xia, L. Y.; Han, A. J.; Wang, Y.; Zhuang, Z. B.; Liu, J. F.; Wang, D. S. et al. Stain regulation to optimize the acidic water oxidation performance of atomic-layer IrOx. Adv. Mater. 2019, 31, 1903616.

    Article  Google Scholar 

  43. Zu, L. H.; Qian, X. Y.; Zhao, S. L.; Liang, Q. H.; Chen, Y. E.; Liu, M.; Su, B. J.; Wu, K. H.; Qu, L. B.; Duan, L. L. et al. Self-assembly of Ir-based nanosheets with ordered interlayer space for enhanced electrocatalytic water oxidation. J. Am. Chem. Soc. 2022, 144, 2208–2217.

    Article  CAS  PubMed  Google Scholar 

  44. Jin, H.; Choi, S.; Bang, G. J.; Kwon, T.; Kim, H. S.; Lee, S. J.; Hong, Y. J.; Lee, D. W.; Park, H. S.; Baik, H. et al. Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation. Energy Environ. Sci. 2022, 15, 1119–1130.

    Article  CAS  Google Scholar 

  45. Zhai, G. Y.; Liu, Y. Y.; Mao, Y. Y.; Zhang, H. G.; Lin, L. T.; Li, Y. J.; Wang, Z. Y.; Cheng, H. F.; Wang, P.; Zheng, Z. K. et al. Improved photocatalytic CO2 and epoxides cycloaddition via the synergistic effect of Lewis acidity and charge separation over Zn modified UiO-bpydc. Appl. Catal. B: Environ. 2022, 301, 120793.

    Article  CAS  Google Scholar 

  46. Nong, H. N.; Reier, T.; Oh, H. S.; Gliech, M.; Paciok, P.; Vu, T. H. T.; Teschner, D.; Heggen, M.; Petkov, V.; Schlögl, R. et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 2018, 1, 841–851.

    Article  CAS  Google Scholar 

  47. Zheng, Y. R.; Vernieres, J.; Wang, Z. B.; Zhang, K.; Hochfilzer, D.; Krempl, K.; Liao, T. W.; Presel, F.; Altantzis, T.; Fatermans, J. et al. Monitoring oxygen production on mass-selected iridium-tantalum oxide electrocatalysts. Nat. Energy 2021, 7, 55–64.

    Article  ADS  Google Scholar 

  48. Zhang, D. F.; Li, M. N.; Yong, X.; Song, H. Q.; Waterhouse, G. I. N.; Yi, Y. F.; Xue, B. J.; Zhang, D. L.; Liu, B. Z.; Lu, S. Y. Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media. Nat. Commun. 2023, 14, 2517.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Amano, F.; Furusho, Y.; Yamazoe, S.; Yamamoto, M. Structure-stability relationship of amorphous IrO2-Ta2O5 electrocatalysts on Ti felt for oxygen evolution in sulfuric acid. J. Phys. Chem. C 2022, 126, 1817–1827.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Key Research and Development Program of China (Nos. 2018YFA0702001 and 2021YFA1500400), the National Natural Science Foundation of China (Nos. 22371268 and 22175163), Fundamental Research Funds for the Central Universities (No. WK2060000016), Anhui Development and Reform Commission (No. AHZDCYCX-2SDT2023-07), and Youth Innovation Promotion Association of the Chinese Academy of Science (No. 2018494) supported this work. We acknowledge USTC Tang Scholar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gongming Wang or Xun Hong.

Electronic Supplementary Material

12274_2024_6524_MOESM1_ESM.pdf

Electronic Supplementary Material: Constructing high coordination number of Ir–O–Ru bonds in IrRuOx nanomeshes for highly stable acidic oxygen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, G., Li, R., Zhang, Y. et al. Constructing high coordination number of Ir–O–Ru bonds in IrRuOx nanomeshes for highly stable acidic oxygen evolution reaction. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6524-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6524-6

Keywords

Navigation