Skip to main content
Log in

Recent achievements in selenium-based transition metal electrocatalysts for pH-universal water splitting

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The electrolysis of water to produce hydrogen is an important technique to replace traditional fossil fuel-based hydrogen production. This method efficiently converts electrical energy into chemical energy, it is ostensibly a promising candidate for addressing the energy crisis. Significant effort has been devoted to developing efficient electrocatalysts for water electrolysis. The exploration of suitable catalytic materials for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and other bifunctional electrocatalytic reactions is crucial. Transition metal selenides (TMSes) have emerged as potential HER and OER electrocatalysts because of their unique electronic structures, which are beneficial for charge transfer, tuneable bandgaps, distinctive morphologies, and low-cost. This review discusses the mechanisms and performance comparisons of TMSes in overall water splitting under various pH conditions. From an industrial and commercial perspective, the catalytic performance of TMSes for the HER and OER is not ideal. Methods for preparing electrocatalytic materials and optimizing materials for overall water decomposition and modulation mechanisms have been introduced to improve electrocatalytic performance, such as element doping, carbon composites, bimetallic systems, morphology control, and heterogeneous interface engineering. Finally, the challenges and prospects of TMSes were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, H.; Wang, Y.; Jiang, Z.; Deng, B.; Xin, Y.; Jiang, Z. Defect engineering promoted ultrafine ir nanoparticle growth and Sr single-atom adsorption on TiO2 nanowires to achieve high-performance overall water splitting in acidic media. Advanced Energy Materials. 2024, 14, 2303987

    Article  CAS  Google Scholar 

  2. Zeb, Z.; Huang, Y. C.; Chen, L. L.; Zhou, W. B.; Liao, M. H.; Jiang, Y. Y.; Li, H. T.; Wang, L. M.; Wang, L.; Wang, H. et al. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord. Chem. Rev. 2023, 482, 215058.

    Article  CAS  Google Scholar 

  3. Ren, J. T.; Chen, L.; Wang, H. Y.; Yuan, Z. Y. High-entropy alloys in electrocatalysis: From fundamentals to applications. Chem. Soc. Rev. 2023, 52, 8319–8373.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, X.; He, D. P.; Xia, B. Y.; Sun, Y. J.; You, B. Ambient electrosynthesis toward single-atom sites for electrocatalytic green hydrogen cycling. Adv. Mater. 2023, 35, 2210703.

    Article  CAS  Google Scholar 

  5. Li, Y.; Jiao, Y. Q.; Yan, H. J.; Tian, C. G.; Wu, A. P.; Fu, H. G. Recent progress in synergistic electrocatalysis for generation of valuable products based on water cycle. Nano Res. 2023, 16, 6444–6476.

    Article  Google Scholar 

  6. Xue, Q.; Wang, Z.; Ding, Y.; Li, F. M.; Chen, Y. Chemical functionalized noble metal nanocrystals for electrocatalysis. Chin. J. Catal. 2023, 45, 6–16.

    Article  CAS  Google Scholar 

  7. Wu, J. C.; Wang, Z. F.; Guan, T. T.; Zhang, G. L.; Zhang, J.; Han, J.; Guan, S. Q.; Wang, N.; Wang, J. L.; Li, K. X. Optimizing band structure of CoP nanoparticles via rich-defect carbon shell toward bifunctional electrocatalysts for overall water splitting. Carbon Energy 2023, 5, e268.

    Article  CAS  Google Scholar 

  8. Wang, K. X.; Wang, S.; Hui, K. S.; Gao, H. X.; Dinh, D. A.; Yuan, C. Z.; Zha, C.; Shao, Z. P.; Tang, Z. K.; Hui, K. N. Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo2C/NC-Ru for highly efficient alkaline hydrogen evolution. Carron Energy 2022, 4, 856–866.

    CAS  Google Scholar 

  9. Zhang, H.; Aierke, A.; Zhou, Y. T.; Ni, Z. T.; Feng, L. G.; Chen, A. R.; Wågberg, T.; Hu, G. Z. A high-performance transition-metal phosphide electrocatalyst for converting solar energy into hydrogen at 19.6% STH efficiency. Carbon Energy 2023, 5, e217.

    Article  CAS  Google Scholar 

  10. Ping, X. F.; Liang, D.; Wu, Y. Y.; Yan, X. X.; Zhou, S. X.; Hu, D. K.; Pan, X. Q.; Lu, P. F.; Jiao, L. Y. Activating a two-dimensional PtSe2basal plane for the hydrogen evolution reaction through the simultaneous generation of atomic vacancies and Pt clusters. Nano Lett. 2021, 21, 3857–3863.

    Article  CAS  PubMed  Google Scholar 

  11. Anantharaj, S.; Noda, S. Layered 2D PtX2 (X=S, Se, Te) for the electrocatalytic HER in comparison with Mo/WX2 and Pt/C: Are we missing the bigger picture. Energy Environ.Sci. 2022, 15, 1461–1478.

    Article  CAS  Google Scholar 

  12. Huang, K.; Lin, C. L.; Yu, G. Q.; Du, P.; Xie, X. Y.; He, X.; Zheng, Z. C.; Sun, N.; Tang, H. L.; Li, X. B. et al. Ru/Se-RuO2 composites via controlled selenization strategy for enhanced acidic oxygen evolution. Adv. Funct. Mater. 2023, 33, 2211102.

    Article  CAS  Google Scholar 

  13. Han, D. C.; Gao, N. X.; Chu, Y. Y.; Shi, Z. P.; Wang, Y.; Ge, J. J.; Xiao, M. L.; Liu, C. P.; Xing, W. Key role of electron accessibility at the noble metal-free catalytic interface in hydrogen evolution reaction. Nano Res., in press, DOI:https://doi.org/10.1007/s12274-023-6229-2.

  14. He, Y. T.; Zhou, X. C.; Jia, Y. F.; Li, H. T.; Wang, Y.; Liu, Y. N.; Tan, Q. Advances in transition-metal-based dual-atom oxygen electrocatalysts. Small 2023, 19, 2206477.

    Article  CAS  Google Scholar 

  15. Li, J. J.; Jing, Z. Y.; Bai, H. T.; Chen, Z. H.; Osman, A. I.; Farghali, M.; Rooney, D. W.; Yap, P. S. Optimizing hydrogen production by alkaline water decomposition with transition metal-based electrocatalysts. Environ. Chem. Lett. 2023, 21, 2583–2617.

    Article  CAS  Google Scholar 

  16. Wang, P.; Zhang, S. Q.; Wang, Z. B.; Mo, Y. H.; Luo, X. Y.; Yang, F.; Lv, M. L.; Li, Z. X.; Liu, X. W. Manganese- based oxide electrocatalysts for the oxygen evolution reaction: A review. J. Mater. Chem. A 2023, 11, 5476–5494.

    Article  CAS  Google Scholar 

  17. Wang, C. D.; Humayun, M.; Debecker, D. P.; Wu, Y. Electrocatalytic water oxidation with layered double hydroxides confining single atoms. Coord. Chem. Rev. 2023, 478, 214973.

    Article  CAS  Google Scholar 

  18. Hu, H. S.; Zhang, Z. R.; Zhang, Y. W.; Thomas, T.; Du, H.Y.; Huang, K. K.; Attfield, J. P.; Yang, M. H. An ultra-low Pt metal nitride electrocatalyst for sustainable seawater hydrogen production. Energy Environ.Sci. 2023, 16, 4584–4592.

    Article  CAS  Google Scholar 

  19. Yang, H. M.; Weng, C. C.; Wang, H. Y.; Yuan, Z. Y. Transition metal nitride-based materials as efficient electrocatalysts: Design strategies and prospective applications. Coord. Chem. Rev. 2023, 496, 215410.

    Article  CAS  Google Scholar 

  20. Xing, H. R.; Hu, P.; He, C. J.; Zhang, X. Y.; Han, J. Y.; Yang, F.; Bai, R.; Zhang, W.; Wang, K. S.; Volinsky, A. A. Design of high-performance molybdenum alloys via doping metal oxide and carbide strengthening: A review. J. Mater. Sci. Technol. 2023, 160, 161–180.

    Article  CAS  Google Scholar 

  21. Yu, W. L.; Gao, Y. X.; Chen, Z.; Zhao, Y.; Wu, Z. X.; Wang, L. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides. Chin. J.Catal. 2021, 42, 1876–1902.

    Article  CAS  Google Scholar 

  22. Liu, D.; Xu, G. Y.; Yang, H.; Wang, H. T.; Xia, B. Y. Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2208358.

    Article  CAS  Google Scholar 

  23. Mei, J.; Deng, Y. Q.; Cheng, X. H.; Wang, X.; Wu, Q. Recent advances in iron-based sulfides electrocatalysts for oxygen and hydrogen evolution reaction. Chin. Chem. Lett. 2024, 35, 108900.

    Article  CAS  Google Scholar 

  24. Chong, B.; Xia, M. Y.; Lv, Y.; Li, H.; Yan, X. Q.; Lin, B.; Yang, G. D. Hierarchical phosphorus-oxygen incorporated cobalt sulfide hollow micro/nano-reactor for highly-efficient electrocatalytic overall water splitting. Chem. Eng. J. 2023, 465, 142853.

    Article  CAS  Google Scholar 

  25. Sharma, K.; Kumar, A.; Ahamad, T.; Van Le, Q.; Raizada, P.; Singh, A.; Nguyen, L. H.; Thakur, S.; Nguyen, V. H.; Singh, P. Sulphur vacancy defects engineered metal sulfides for amended photo(electro)catalytic water splitting: A review. J. Mater. Sci. Technol. 2023, 152, 50–64.

    Article  CAS  Google Scholar 

  26. Lee, E.; Fokwa, B. P. T. Nonprecious metal borides: Emerging electrocatalysts for hydrogen production. Acc. Chem. Res. 2022, 55, 56–64.

    Article  PubMed  Google Scholar 

  27. Yue, D.; Feng, T. L.; Zhu, Z. C.; Lu, S. Y.; Yang, B. Ir single atom-doped Ni2P anchored by carbonized polymer dots for robust overall water splitting. ACS Catal. 2024, 14, 3006–3017

    Article  CAS  Google Scholar 

  28. Fan, H. F.; Jiao, D. X.; Fan, J. C.; Wang, D. W.; Zaman, B.; Zhang, W.; Zhang, L.; Zheng, W. T.; Cui, X. Q. Kinetically and thermodynamically expediting elementary steps via high-valence Cr-incorporated of nickel selenide for water electrolysis. Nano Res., in press, DOI:https://doi.org/10.1007/s12274-023-5992-4.

  29. Wilson, J. A.; Di Salvo, F. J.; Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 1975, 24, 117–201.

    Article  CAS  Google Scholar 

  30. Peng, X.; Yan, Y. J.; Jin, X.; Huang, C.; Jin, W. H.; Gao, B.; Chu, P. K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234.

    Article  CAS  Google Scholar 

  31. Kwon, I. S.; Kwak, I. H.; Kim, J. Y.; Lee, S. J.; Sial, Q. A.; Ihsan, J.; Lee, K. S.; Yoo, S. J.; Park, J.; Kang, H. S. 2H-2M phase control of WSe2nanosheets by se enrichment toward enhanced electrocatalytic hydrogen evolution reaction. Adv.Mater., in press, DOI:https://doi.org/10.1002/adma.202307867.

  32. Lee, H. J.; Choe, M.; Yang, W. G.; Lee, S. W.; Park, Y. J.; Hwang, H.; Chhowalla, M.; Lee, Z.; Shin, H. S. Phase-engineered WS2 monolayer quantum dots by rhenium doping. ACS Nano 2023, 17, 25731–25738.

    Article  CAS  PubMed  Google Scholar 

  33. Song, M.; Li, F. Q.; Zhang, Q.; Shen, T.; Luo, G. Y.; Li, D. G.; Wang, D. L. Phase engineering of Pt-Mn intermetallics for durable oxygen reduction reaction electrocatalysis. Chem. Eng. J. 2023, 478, 147287.

    Article  CAS  Google Scholar 

  34. Su, H.; Pan, X. D.; Li, S. Q.; Zhang, H.; Zou, R. Q. Defect-engineered two-dimensional transition metal dichalcogenides towards electrocatalytic hydrogen evolution reaction. Carbon Energy 2023, 5, e296.

    Article  CAS  Google Scholar 

  35. Zhang, X. Y.; Yang, Y. Y.; Liu, Y. J.; Jia, Z.; Wang, Q. Q.; Sun, L. G.; Zhang, L. C.; Kruzic, J. J.; Lu, J.; Shen, B. L. Defect engineering of a high-entropy metallic glass surface for high-performance overall water splitting at ampere-level current densities. Adv. Mater. 2023, 35, 2303439.

    Article  CAS  Google Scholar 

  36. Xue, G.; Li, Y. Q.; Du, R.; Wang, J. Y.; Hübner, R.; Gao, M.; Hu, Y. Leveraging ligand and composition effects: Morphologytailorable Pt-Bi bimetallic aerogels for enhanced (photo-) electrocatalysis. Small 2023, 19, 2301288.

    Article  CAS  Google Scholar 

  37. Chong, L. N.; Wen, J. G.; Song, E. H.; Yang, Z. Z.; Bloom, I. D.; Ding, W. Synergistic Co-Ir/Ru composite electrocatalysts impart efficient and durable oxygen evolution catalysis in acid. Adv. Energy Mater. 2023, 13, 2302306.

    Article  CAS  Google Scholar 

  38. Jiang, B.; Guo, Y. N.; Sun, F. Y.; Wang, S. Y.; Kang, Y. Q.; Xu, X. T.; Zhao, J. J.; You, J.; Eguchi, M.; Yamauchi, Y. et al. Nanoarchitectonics of metallene materials for electrocatalysis. ACS Nano 2023, 17, 13017–13043.

    Article  CAS  PubMed  Google Scholar 

  39. Dey, A.; Varagnolo, S.; Power, N. P.; Vangapally, N.; Elias, Y.; Damptey, L.; Jaato, B. N.; Gopalan, S.; Golrokhi, Z.; Sonar, P. et al. Doped MXenes-a new paradigm in 2D systems: Synthesis, properties and applications. Prog.Mater.Sci. 2023, 139, 101166.

    Article  CAS  Google Scholar 

  40. Putri, L. K.; Ng, B. J.; Yeo, R. Y. Z.; Ong, W. J.; Mohamed, A. R.; Chai, S. P. Engineering nickel phosphides for electrocatalytic hydrogen evolution: A doping perspective. Chem. Eng. J. 2023, 461, 141845.

    Article  CAS  Google Scholar 

  41. Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.

    Article  Google Scholar 

  42. Li, X. P.; Zheng, L. R.; Liu, S. J.; Ouyang, T.; Ye, S.Y.; Liu, Z. Q. Heterostructures of NiFe LDH hierarchically assembled on MoS2 nanosheets as high-efficiency electrocatalysts for overall water splitting. Chin.Chem.Lett. 2022, 33, 4761–4765.

    Article  CAS  Google Scholar 

  43. Sun, L.; Luo, Q. M.; Dai, Z.F.; Ma, F. Material libraries for electrocatalytic overall water splitting. Coord.Chem.Rev. 2021, 444, 214049.

    Article  CAS  Google Scholar 

  44. Sun, H. M.; Yan, Z. H.; Tian, C. Y.; Li, C.; Feng, X.; Huang, R.; Lan, Y. H.; Chen, J.; Li, C. P.; Zhang, Z. et al. Bixbyite-type Ln2O3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution. Nat.Commun. 2022, 13, 3857.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tian, Y. K.; Huang, A. J.; Wang, Z. G.; Wang, M. K.; Wu, Q. S.; Shen, Y.; Zhu, Q. J.; Fu, Y. Q.; Wen, M. Two-dimensional heteronanostructured electrocatalyst of Ni/NiFe-layered double oxide for highly efficient hydrogen evolution reaction in alkaline medium. Chem. Eng. J. 2021, 426, 131827.

    Article  CAS  Google Scholar 

  46. Wang, D. G.; Wu, J. X.; Jiao, L. Y.; Xie, L. M. In situ identification of active sites during electrocatalytic hydrogen evolution. Nano Res. 2023, 16, 12910–129

    Article  CAS  Google Scholar 

  47. Zhang, H.; Han, H.; Yang, X.; Ma, H. Y.; Song, Z. F.; Ji, X. Q. Reversing Mg suppression effect on Co-site water oxidation of MgCo2O4 based on vanadium-atom electronic affinity synergy with mg sites toward electronic redistribution. Catal. Sci. Technol. 2023, 13, 6951–6958.

    Article  CAS  Google Scholar 

  48. Ouyang, L.; He, X.; Sun, Y. T.; Zhang, L. C.; Zhao, D. L.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Asiri, A. M.; Liu, Q. et al. RuO2 nanoparticle-decorated TiO2 nanobelt array as a highly efficient electrocatalyst for the hydrogen evolution reaction at all pH values. Inorg. Chem. Front. 2022, 9, 6602–6607.

    Article  CAS  Google Scholar 

  49. Talib, S. H.; Lu, Z. S.; Yu, X. H.; Ahmad, K.; Bashir, B.; Yang, Z. X.; Li, J. Theoretical inspection of M1/PMA single-atom electrocatalyst: Ultra-high performance for water splitting (HER/OER) and oxygen reduction reactions (OER). ACS Catal. 2021, 11, 8929–8941.

    Article  CAS  Google Scholar 

  50. Bockris, J. O. Kinetics of activation controlled consecutive electrochemical reactions: Anodic evolution of oxygen. J. Chem. Phys. 1956, 24, 817–827.

    Article  CAS  Google Scholar 

  51. Matsumoto, Y.; Sato, E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater.Chem.Phys. 1986, 14, 397–426.

    Article  CAS  Google Scholar 

  52. Liu, H. J.; Zhang, S.; Fan, R. Y.; Liu, B.; Lv, R. Q.; Chai, Y. M.; Dong, B. Activated M, S Co-doping (M=Ni, Co, Mn) inverse spinel oxides with mixed mechanisms for water oxidation. Appl. Catal. B-Environ. 2024, 343, 123567.

    Article  CAS  Google Scholar 

  53. Zhou, B. H.; Gao, R. J.; Zou, J. J.; Yang, H. M. Surface design strategy of catalysts for water electrolysis. Small 2022, 18, 2202336.

    Article  CAS  Google Scholar 

  54. Fabbri, E.; Habereder, A.; Waltar, K.; Kötz, R.; Schmidt, T. J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 2014, 4, 3800–3821.

    Article  CAS  Google Scholar 

  55. Wang, Y. Q.; Tao, S.; Lin, H.; Wang, G. P.; Zhao, K. N.; Cai, R. M.; Tao, K. W.; Zhang, C. X.; Sun, M. Z.; Hu, J. et al. Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor. Nano Energy 2021, 81, 105606.

    Article  CAS  Google Scholar 

  56. Liu, Y. P.; Liang, X.; Chen, H.; Gao, R. Q.; Shi, L.; Yang, L.; Zou, X. X. Iridium- containing water-oxidation catalysts in acidic electrolyte. Chin. J.Catal. 2021, 42, 1054–1077.

    Article  CAS  Google Scholar 

  57. Li, Y.; Bo, T. T.; Zuo, S. W.; Zhang, G. K.; Zhao, X. J.; Zhou, W.; Wu, X.; Zhao, G. X.; Huang, H. W.; Zheng, L. R. et al. Reversely trapping isolated atoms in high oxidation state for accelerating the oxygen evolution reaction kinetics. Angew. Chem., Int. Ed. 2023, 62, e202309341.

    Article  CAS  Google Scholar 

  58. Zuo, S. W.; Wu, Z. P.; Zhang, G.K.; Chen, C. L.; Ren, Y. F.; Zheng, L. R.; Zhang, J.; Han, Y.; Zhang, H. B. Correlating structural disorder in metal (Oxy)hydroxides and catalytic activity in electrocatalytic oxygen evolution. Angew. Chem., Int. Ed., in press, DOI:https://doi.org/10.1002/anie.202316762.

  59. Wang, X. P.; Xi, S. B.; Huang, P. R.; Du, Y. H.; Zhong, H. Y.; Wang, Q.; Borgna, A.; Zhang, Y. W.; Wang, Z. B.; Wang, H. et al. Pivotal role of reversible NiO6geometric conversion in oxygen evolution. Nature 2022, 611, 702–708.

    Article  CAS  PubMed  Google Scholar 

  60. Wang, Z. Y.; Goddard, W. A.; Xiao, H. Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides. Nat. Commun. 2023, 14, 4228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou, Z.; Pei, Z. X.; Wei, L.; Zhao, S. L.; Jian, X.; Chen, Y. Electrocatalytic hydrogen evolution under neutral pH conditions: Current understandings, recent advances, and future prospects. Energy Environ. Sci. 2020, 13, 3185–3206.

    Article  CAS  Google Scholar 

  62. Zhang, L. C.; Li, L.; Liang, J.; Fan, X. Y.; He, X.; Chen, J.; Li, J.; Li, Z. X.; Cai, Z. W.; Sun, S. J. et al. Highly efficient and stable oxygen evolution from seawater enabled by a hierarchical NiMoSx microcolumn@NiFe-layered double hydroxide nanosheet array. Inorg. Chem. Front. 2023, 10, 2766–2775.

    Article  CAS  Google Scholar 

  63. Fang, X. D.; Wang, X. G.; Ouyang, L.; Zhang, L. C.; Sun, S. J.; Liang, Y. M.; Luo, Y. S.; Zheng, D. D.; Kang, T. R.; Liu, Q. et al. Amorphous Co-Mo-B film: A high-active electrocatalyst for hydrogen generation in alkaline seawater. Molecules 2022, 27, 7617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, J.; Zhang, L. C.; Li, J.; He, X.; Zheng, Y. Y.; Sun, S. J.; Fang, X. D.; Zheng, D. D.; Luo, Y. S.; Wang, Y. et al. High-efficiency overall alkaline seawater splitting: Using a nickel-iron sulfide nanosheet array as a bifunctional electrocatalyst. J. Mater. Chem. A 2023, 11, 1116–1122.

    Article  CAS  Google Scholar 

  65. Zhang, H.; He, X.; Dong, K.; Yao, Y. C.; Sun, S. J.; Zhang, M.; Yue, M.; Yang, C. X.; Zheng, D. D.; Liu, Q. et al. Selenate promoted stability improvement of nickel selenide nanosheet array with an amorphous NiOOH layer for seawater oxidation. Mater. Today Phys. 2023, 38, 101249.

    Article  CAS  Google Scholar 

  66. Chen, W. X.; Wei, W.; Li, F.; Wang, Y. J.; Liu, M.; Dong, S.; Cui, J. H.; Zhang, Y. Y.; Wang, R.; Ostrikov, K. K. et al. Tunable built-in electric field in Ru nanoclusters-based electrocatalyst boosts water splitting and simulated seawater electrolysis. Adv. Funct. Mater., in press, DOI:https://doi.org/10.1002/adfm.202310690.

  67. Lyu, C.; Cheng, J. R.; Wang, H. C.; Yang, Y. Q.; Wu, K. L.; Song, P.; Lau, W. M.; Zheng, J. L.; Zhu, X. X.; Yang, H. Y. Construction of interface-engineered coral-like nickel phosphide@ceriumoxide hybrid nanoarrays to boost electrocatalytic hydrogen evolution performance in alkaline water/seawater electrolytes. Adv. Compos. Hybrid Mater. 2023, 6, 175.

    Article  CAS  Google Scholar 

  68. Wang, B.; Chen, X.; He, Y.; Liu, Q.; Zhang, X.; Luo, Z.; Kennedy, J. V.; Li, J.; Qian, D.; Liu, J. et al. Fe2O3/P- doped CoMoO4 electrocatalyst delivers efficient overall water splitting in alkaline media. Applied Catalysis B: Environmental 2024, 346, 123741

    Article  CAS  Google Scholar 

  69. Hussain, S. N.; Men, Y. N.; Li, Z.; Zhao, P. P.; Cheng, G. Z.; Luo, W. Molybdenum- induced tuning 3d-orbital electron filling degree of CoSe2 for alkaline hydrogen and oxygen evolution reactions. Chin. Chem. Lett. 2023, 34, 107364.

    Article  CAS  Google Scholar 

  70. Abdullahi, I. M.; Masud, J.; Ioannou, P. C.; Ferentinos, E.; Kyritsis, P.; Nath, M. A molecular tetrahedral cobalt-seleno-based complex as an efficient electrocatalyst for water splitting. Molecules 2021, 26, 945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cupertino, D.; Birdsall, D. J.; Slawin, A. M. Z.; Woollins, J. D. The preparation and coordination chemistry of Pr2P(E)NHP(E′)iPr2 (E, E′=Se; E=Se, E′=S; E=S, E′=O; E,E′=O. Inorgan. Chim. Acta 1999, 290, 1–7.

    Article  CAS  Google Scholar 

  72. Leigh, G. J. Comprehensive coordination chemistry II from biology to nanotechnology J.A. McCleverty, T. J. Meyer (editors in-chief); Elsevier, Amsterdam, 2003, 10 volumes, 9500 pages, ISBN 0-08-043748-6, Eur 6274.00 (US$5975.00). J. Organomet. Chem. 2004, 689, 2733–2742.

    Google Scholar 

  73. Hussain, S. N.; Gul, H.; Raza, N.; Albouchi, F.; Ahmad, M.; El-Bahy, Z. M.; Hussain, M.; Raza, W.; Yasin, G. Morphology controlled synthesis of cobalt diselenide nanorods for highly efficient hydrogen evolution in alkaline and acidic media. J. Alloys Compd. 2023, 960, 170679.

    Article  CAS  Google Scholar 

  74. Ding, J. T.; Ji, S.; Wang, H.; Linkov, V.; Wang, R. F. Mesoporous cobalt selenide/nitrogen-doped carbon hybrid as bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reactions. J. Power Sources 2019, 423, 1–8.

    Article  CAS  Google Scholar 

  75. Chen, H. X.; Xu, H.; Song, Z. R.; Liu, Y.; Cui, H.; Gao, J. K. Pressure-induced bimetallic carbon nanotubes from metal-organic frameworks as optimized bifunctional electrocatalysts for water splitting. Rare Met. 2023, 42, 155–164.

    Article  CAS  Google Scholar 

  76. Singu, B. S.; Chitumalla, R. K.; Mandal, D.; Kim, Y.; Kim, G. H.; Chung, H. T.; Jang, J.; Kim, H. Development of metal-organic framework-derived NiMo-MoO3∓x porous nanorod for efficient electrocatalytic hydrogen evolution reactions. Appl. Catal. B-Environ. 2023, 328, 122421.

    Article  CAS  Google Scholar 

  77. You, T.; Deng, K.; Liu, P.; Lv, X. B.; Tian, W.; Li, H. J.; Ji, J. Y. Synergism of NiFe layered double hydroxides/phosphides and Co-NC nanorods array for efficient electrocatalytic water splitting. Chem. Eng. J. 2023, 470, 144348.

    Article  CAS  Google Scholar 

  78. Pi, Y. C.; Qiu, Z. M.; Sun, Y.; Ishii, H.; Liao, Y. F.; Zhang, X. Y.; Chen, H. Y.; Pang, H. Synergistic mechanism of sub-nanometric Ru clusters anchored on tungsten oxide nanowires for high-efficient bifunctional hydrogen electrocatalysis. Adv. Sci. (Weinh.) 2023, 10, 2206096.

    CAS  PubMed  Google Scholar 

  79. Dang, Y. J.; Li, X.; Chen, Z. K.; Zhao, X. D.; Ma, B.; Chen, Y. T. Hierarchical MoN@NiFe-LDH heterostructure nanowire array for highly efficient electrocatalytic hydrogen evolution. Small 2023, 19, 2303932.

    Article  CAS  Google Scholar 

  80. Tian, G. Y.; Yao, B. X.; Han, G. F.; Li, Y.; Zhang, K. F.; Meng, J. P. Dual- phased Mo2C/Mo3N2/C nanosheets for efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 2023, 11, 6581–6590.

    Article  CAS  Google Scholar 

  81. Liu, H.; Wang, K.; He, W. J.; Zheng, X. R.; Gong, T.; Li, Y.; Zhao, J. L.; Zhang, J.; Liang, L. M. Phosphorus-doped nickel selenides nanosheet arrays as highly efficient electrocatalysts for alkaline hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 1967–1975.

    Article  CAS  Google Scholar 

  82. Yuan, W. H.; Li, Y.; Liang, L. M.; Wang, F. Q.; Liu, H. Dual-anion doping enables nise2electrocatalysts to accelerate alkaline hydrogen evolution reaction. ACS Appl. Energy Mater. 2022, 5, 5036–5043.

    Article  CAS  Google Scholar 

  83. Chen, W. X.; Zhu, X. W.; Wei, W.; Chen, H. R.; Dong, T. H.; Wang, R.; Liu, M.; Ostrikov, K. K.; Peng, P.; Zang, S. Q. Neighboring platinum atomic sites activate platinum-cobalt nanoclusters as high-performance ORR/OER/HER electrocatalysts. Small 2023, 19, 2304294.

    Article  CAS  Google Scholar 

  84. Singh, H.; Marley-Hines, M.; Chakravarty, S.; Nath, M. Multi-walled carbon nanotube supported manganese selenide as a highly active bifunctional OER and ORR electrocatalyst. J. Mater. Chem. A 2022, 10, 6772–6784.

    Article  CAS  Google Scholar 

  85. Wang, H.; Sun, X.; Wang, Y. Z.; Li, K. C.; Wang, J.; Dai, X.; Chen, B.; Chong, D. T.; Zhang, L. Y.; Yan, J. J. Acid enhanced zipping effect to densify MWCNT packing for multifunctional MWCNT films with ultra-high electrical conductivity. Nat. Commun. 2023, 14, 380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, M. S.; Abazari, R.; Sanati, S.; Chen, J.; Sun, M. Y. Z.; Bai, C. H.; Kirillov, A. M.; Zhou, Y. T.; Hu, G. Z. Compositional engineering of HKUST-1/sulfidized NiMn-LDH on functionalized MWCNTs as remarkable bifunctional electrocatalysts for water splitting. Carbon Energy 2023, 5, e459.

    Article  CAS  Google Scholar 

  87. Bhat, K. S.; Nagaraja, H. S. Nickel selenide nanostructures as an electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 19851–19863.

    Article  CAS  Google Scholar 

  88. Wang, F. Q.; Zhang, Y. Y.; Yuan, W. H.; Mao, J.; Wang, K.; Li, Y.; Chen, C.; Liang, L. M.; Liu, C. C. Plasma etching of pyrite-type nickel diselenide nanosheets to create selenium vacancies for applications as electrocatalysts for hydrogen evolution. ACS Appl. Nano Mater. 2023, 6, 3848–3855.

    Article  CAS  Google Scholar 

  89. Ding, J. T.; Wang, P.; Ji, S.; Wang, H.; Brett, D. J. L.; Wang, R. F. Mesoporous nickel selenide N-doped carbon as a robust electrocatalyst for overall water splitting. Electrochim. Acta 2019, 300, 93–101.

    Article  CAS  Google Scholar 

  90. Wan, K.; Luo, J. S.; Zhang, X.; Subramanian, P.; Fransaer, J. Sulfur-modified nickel selenide as an efficient electrocatalyst for the oxygen evolution reaction. J. Energy Chem. 2021, 62, 198–203.

    Article  CAS  Google Scholar 

  91. Wang, Y. Q.; He, F. Z.; Ren, Y. M.; Lin, Y. S.; Zhong, M.; Su, B. T.; Lei, Z. Q. Straightforward preparation of nickel selenide nanosheets supported on nickel foam as a highly efficient electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 25631–25637.

    Article  CAS  Google Scholar 

  92. Wei, P. K.; Hao, Z. W.; Yang, Y.; Liu, L. Hollow nickel selenide nanospheres coated in carbon as water oxygen electrocatalysts. Mater. Lett. 2021, 305, 130748.

    Article  CAS  Google Scholar 

  93. Wang, M.; Zhang, L.; Pan, J. L.; Huang, M. R.; Zhu, H. W. A highly efficient Fe-doped Ni3S2electrocatalyst for overall water splitting. Nano Res. 2021, 14, 4740–4747.

    Article  CAS  Google Scholar 

  94. Huang, J.; Wen, S. T.; Chen, G. L.; Chen, W.; Wang, G. X.; Fan, H. F.; Chen, D. L.; Song, C. S.; Li, M. C.; Wang, X. Q. et al. Multiphase Ni-Fe-selenide nanosheets for highly-efficient and ultrastable water electrolysis. Appl. Catal. BEnviron. 2020, 277, 119220.

    Article  CAS  Google Scholar 

  95. Zhou, Y.; Liu, H.; Gu, X. C.; Wu, X.; Feng, L. G. Hetero MOF-on-MOF-derived carbon nanotube interconnected nitrogen-doped carbon-encapsulated FeNi/FeF2 for efficient oxygen evolution reaction. Carbon Energy 2022, 4, 924–938.

    Article  CAS  Google Scholar 

  96. Jun, S. E.; Hong, S. P.; Choi, S.; Kim, C.; Ji, S. G.; Park, I. J.; Lee, S. A.; Yang, J. W.; Lee, T. H.; Sohn, W. et al. Boosting unassisted alkaline solar water splitting using silicon photocathode with TiO2nanorods decorated by edge-rich MoS2 nanoplates. Small 2021, 17, 2103457.

    Article  CAS  Google Scholar 

  97. Wu, D. S.; Kusada, K.; Yoshioka, S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Chen, Y. N.; Seo, O.; Kim, J.; Song, C. et al. Efficient overall water splitting in acid with anisotropic metal nanosheets. Nat. Commun. 2021, 12, 1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hong, C. B.; Li, X. F.; Wei, W. B.; Wu, X. T.; Zhu, Q. L. Nanoengineering of Ru-based hierarchical porous nanoreactors for highly efficient pH-universal overall water splitting. Appl.Catal. B-Environ. 2021, 294, 120230.

    Article  CAS  Google Scholar 

  99. Hou, P.; Li, D.; Yang, N. L.; Wan, J. W.; Zhang, C. H.; Zhang, X. Q.; Jiang, H. Y.; Zhang, Q. H.; Gu, L.; Wang, D. Delicate control on the shell structure of hollow spheres enables tunable mass transport in water splitting. Angew. Chem., Int. Ed. 2021, 133, 7002–7007.

    Article  Google Scholar 

  100. Wu, L. B.; Yu, L.; McElhenny, B.; Xing, X. X.; Luo, D.; Zhang, F. H.; Bao, J. M.; Chen, S.; Ren, Z. F. Rational design of core-shell-structured CoPx@FeOOH for efficient seawater electrolysis. Appl. Catal. B-Environ. 2021, 294, 120256.

    Article  CAS  Google Scholar 

  101. Loh, J. Y.; Yap, F. M.; Ong, W. J. 2D/2D heterojunction interface: Engineering of 1T/2H MoS2 coupled with Ti3C2Tx heterostructured electrocatalysts for pH-universal hydrogen evolution. J. Mater. Sci. Technol. 2024, 179, 86–97.

    Article  Google Scholar 

  102. Xiong, R. Z.; Song, Y. J.; Li, K. J.; Xiao, Y. H.; Cheng, B. C.; Lei, S. J. A novel 1D/2D core/shell CdS@SnS2 heterostructure for efficient piezocatalytic hydrogen evolution and pollutant degradation. J. Mater. Chem. A 2023, 11, 18398–18408.

    Article  CAS  Google Scholar 

  103. Xue, J. L.; Liu, Z. P.; Fan, Y. B.; Wang, R.; Li, Y. S. ZIF-derived Fe, Co coordinated N/O-codoped three-dimensional tungsten-carbon matrix for the performance-enhanced zinc-air flow battery and water splitting. Chem. Eng. J. 2023, 476, 146502.

    Article  CAS  Google Scholar 

  104. Zhang, Y.; Xu, J.; Lv, L.; Wang, A. W.; Zhang, B. S.; Ding, Y. G.; Wang, C. D. Electronic engineering of CoSe/FeSe2 hollow nanospheres for efficient water oxidation. Nanoscale 2020, 12, 10196–10204.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, J. Y.; Yan, Y.; Mei, B. B.; Qi, R. J.; He, T.; Wang, Z. T.; Fang, W. S.; Zaman, S.; Su, Y. Q.; Ding, S. J. et al. Local spin-state tuning of cobalt-iron selenide nanoframes for the boosted oxygen evolution. Energy Environ. Sci. 2021, 14, 365–373.

    Article  CAS  Google Scholar 

  106. Xue, Y. Q.; Wang, X. C.; Zhu, M.; Yan, Q.; Zhu, K.; Cheng, K.; Ye, K.; Yan, J.; Cao, D. X.; Wang, G. L. Construction of hollow structure cobalt iron selenide polyhedrons for efficient hydrogen evolution reaction. Int. J. Energy Res. 2020, 44, 12045–12055.

    Article  CAS  Google Scholar 

  107. Xu, H.; Zhang, D.; Liu, M.; Ye, D.; Huo, S.; Chen, W.; Zhang, J. Self-supporting hierarchical Co3O4-nanowires@NiO-nanosheets core-shell nanostructure on carbon foam to form efficient bifunctional electrocatalyst for overall water splitting. Journal of Colloid and Interface Science, 2024, 654, 1293–1302

    Article  CAS  PubMed  Google Scholar 

  108. Gong, C.; Zhao, L.; Li, D. M.; He, X.; Chen, H.; Du, X.; Wang, D. H.; Fang, W.; Zeng, X. H.; Li, W. X. In-situ interfacial engineering of Co(OH)2/Fe7Se8 nanosheets to boost electrocatalytic water splitting. Chem. Eng. J. 2023, 466, 143124.

    Article  CAS  Google Scholar 

  109. Xing, X.; Wu, C.; Yang, G.; Tong, T.; Wang, Y.; Wang, D.; Hernandez, F. C. R.; Ren, Z.; Wang, Z.; Bao, J. FeSe2/CoSe nanosheets for efficient overall water splitting under low cell voltages. Mater. Today Chem. 2022, 26, 101110.

    Article  CAS  Google Scholar 

  110. Gong, Y. M.; Zhao, H. B.; Sun, Y.; Xu, D. Y.; Ye, D. X.; Tang, Y.; He, T.; Zhang, J. J. Partially selenized FeCo layered double hydroxide as bifunctional electrocatalyst for efficient and stable alkaline (Sea)water splitting. J. Colloid Interface Sci. 2023, 650, 636–647.

    Article  CAS  PubMed  Google Scholar 

  111. Anantharaj, S.; Noda, S. Nickel selenides as pre-catalysts for electrochemical oxygen evolution reaction: A review. Int. J. Hydrogen Energy 2020, 45, 15763–15784.

    Article  CAS  Google Scholar 

  112. Xia, X. Y.; Wang, L. J.; Sui, N.; Colvin, V. L.; Yu, W. W. Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale 2020, 18, 12249–12262.

    Article  Google Scholar 

  113. Yin, C.; Yang, F. L.; Wang, S. L.; Feng, L. G. Heterostructured NiSe2/MoSe2 electronic modulation for efficient electrocatalysis in urea assisted water splitting reaction. Chin. J.Catal. 2023, 51, 225–236.

    Article  CAS  Google Scholar 

  114. Lin, Y.; Cui, X. J.; Zhao, Y. L.; Liu, Z. C.; Zhang, G. X.; Pan, Y. Heterojunction interface editing in Co/NiCoP nanospheres by oxygen atoms decoration for synergistic accelerating hydrogen and oxygen evolution electrocatalysis. Nano Res. 2023, 16, 8765–8772.

    Article  CAS  Google Scholar 

  115. Li, X. J.; Zhang, H. K.; Li, X.; Hu, Q.; Deng, C.; Jiang, X. X.; Yang, H. P.; He, C. X. Janus heterostructure of cobalt and iron oxide as dual-functional electrocatalysts for overall water splitting. Nano Res. 2023, 16, 2245–2251.

    Article  CAS  Google Scholar 

  116. Yang, R.; Shi, X. Z.; Wang, Y. Y.; Jin, J.; Liu, H. W.; Yin, J.; Zhao, Y. Q.; Xi, P. X. Ruthenium- modified porous NiCo2O4Nanosheets boost overall water splitting in alkaline solution. Chin. Chem. Lett. 2022, 33, 4930–4935.

    Article  CAS  Google Scholar 

  117. Jiang, J.; Li, F. Y.; Su, H.; Gao, Y. Q.; Li, N.; Ge, L. Flower-like NiCo2S4/NiFeP/NF composite material as an effective electrocatalyst with high overall water splitting performance. Chin. Chem. Lett. 2022, 33, 4367–4374.

    Article  CAS  Google Scholar 

  118. Niu, C. H.; Zhang, Y. X.; Dong, J.; Yuan, R. X.; Kou, W.; Xu, L. B. 3D ordered macro-/mesoporous NixCo100−x alloys as high-performance bifunctional electrocatalysts for overall water splitting. Chin. Chem. Lett. 2021, 32, 2484–2488.

    Article  CAS  Google Scholar 

  119. Li, Y. J.; Wang, W. Y.; Huang, B. J.; Mao, Z. F.; Wang, R.; He, B. B.; Gong, Y. S.; Wang, H. W. Abundant heterointerfaces in MOF-derived hollow CoS2-MoS2nanosheet array electrocatalysts for overall water splitting. J. Energy Chem. 2021, 57, 99–108.

    Article  CAS  Google Scholar 

  120. Zhang, C.; Xue, Y. R.; Hui, L.; Fang, Y.; Liu, Y. X.; Li, Y. L. Graphdiyne@NiOx(OH)y heterostructure for efficient overall water splitting. Mater.Chem.Front. 2021, 5, 5305–5311.

    Article  CAS  Google Scholar 

  121. Liu, H.C.; Yang, F.; Chen, F. J.; Che, S.; Chen, N.; Xu, C.; Wu, N.; Wei, W. K.; Li, Y. F. Bimetallic Ni-Co selenide heterostructure aerogel for highly efficient overall water splitting. Mater. Chem. Front. 2023, 7, 1365–1373.

    Article  CAS  Google Scholar 

  122. Li, M.; Feng, L. G. NiSe2-CoSe2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 2201019–2201024.

    CAS  Google Scholar 

  123. Liang, T. T.; Lenus, S.; Liu, Y. D.; Chen, Y.; Sakthivel, T.; Chen, F. Y.; Ma, F.; Dai, Z. F. Interface and M3+/M2+valence dualengineering on nickel cobalt sulfoselenide/black phosphorus heterostructure for efficient water splitting electrocatalysis. Energy Environ. Mater. 2023, 6, e12332.

    Article  CAS  Google Scholar 

  124. Qiao, H.; Liu, H. T.; Huang, Z. Y.; Ma, Q.; Luo, S. W.; Li, J.; Liu, Y. D.; Zhong, J. X.; Qi, X. Black phosphorus nanosheets modified with au nanoparticles as high conductivity and high activity electrocatalyst for oxygen evolution reaction. Adv. Energy Mater. 2020, 10, 2002424.

    Article  CAS  Google Scholar 

  125. Jiang, J. Z.; Wang, Y. J.; Wu, J.; Wang, H.; Arramel; Zou, Y. L.; Zou, J.; Wang, H. T. Charge transfer interfaces across black phosphorus/Co, N Co-doped carbon heterojunction for enhanced electrocatalytic water splitting. J. Mater. Sci. Technol. 2023, 178, 171–178.

    Article  Google Scholar 

  126. Zhai, W. F.; Chen, Y.; Liu, Y. D.; Sakthivel, T.; Ma, Y. Y.; Qin, Y. B.; Qu, Y. Q.; Dai, Z. F. Enlarging the Ni-O bond polarizability in a phosphorene-hosted metal-organic framework for boosted water oxidation electrocatalysis. ACS Nano 2023, 17, 17254–17264.

    Article  CAS  PubMed  Google Scholar 

  127. Liang, T. T.; Dai, Z. F.; Liu, Y. D.; Zhang, X.; Zeng, H. B. Suppression of Sn2+ and Lewis acidity in SnS2/black phosphorus heterostructure for ppb-level room temperature NO2 gas sensor. Sci. Bull. 2021, 66, 2471–2478.

    Article  CAS  Google Scholar 

  128. Zhao, M.; Cheng, X. R.; Xiao, H.; Gao, J. R.; Xue, S. F.; Wang, X. X.; Wu, H. S.; Jia, J. F.; Yang, N. J. Cobalt- iron oxide/black phosphorus nanosheet heterostructure: Electrosynthesis and performance of (photo-)electrocatalytic oxygen evolution. Nano Res. 2023, 16, 6057–6066.

    Article  CAS  Google Scholar 

  129. Zhang, Y. Y.; Chen, M. X.; Guo, P.; Du, Y. C.; Song, B.; Wang, X. J.; Jiang, Z. X.; Xu, P. Magnetic field-enhanced water splitting enabled by bifunctional molybdenum-doped nickel sulfide on nickel foam. Carbon Energy 2023, 5, e351.

    Google Scholar 

  130. Zhang, L. L.; Shi, X. X.; Xu, A. J.; Zhong, W. W.; Zhang, J. T.; Shen, S. J. Novel CoP/CoMoP2 heterojunction with nanoporous structure as an efficient electrocatalyst for hydrogen evolution. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-6270-1.

  131. Hu, L.; Zhong, P.; Zhang, X.; Xiang, Y.; Balogun, M. S.; Tong, Y. X.; Yang, H. Electronic modulation of zinc selenide toward efficient alkaline hydrogen evolution. Appl. Surf. Sci. 2023, 623, 157040.

    Article  CAS  Google Scholar 

  132. Xia, L.; Song, H.; Li, X. X.; Zhang, X. M.; Gao, B.; Zheng, Y.; Huo, K. F.; Chu, P. K. Hierarchical 0D-2D Co/Mo selenides as superior bifunctional electrocatalysts for overall water splitting. Front. Chem. 2020, 8, 382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Liao, L. L.; Sun, J. Y.; Li, D. Y.; Yu, F.; Zhu, Y. J.; Yang, Y.; Wang, J. J.; Zhou, W. C.; Tang, D. S.; Chen, S. et al. Highly robust non-noble alkaline hydrogen-evolving electrocatalyst from Se-doped molybdenum disulfide particles on interwoven CoSe2nanowire arrays. Small 2020, 16, 1906629.

    Article  CAS  Google Scholar 

  134. Lotfi, Z.; Gholivand, M. B.; Shamsipur, M. Nickel-doped molybdenum diselenide/functionalized multiwalled carbon nanotube as highly efficient non-Pt electrocatalyst toward methanol oxidation reaction. Mater. Today Chem. 2023, 30, 101519.

    Article  CAS  Google Scholar 

  135. Yang, H. H.; Huang, Y.; Teoh, W. Y.; Jiang, L. J.; Chen, W. J.; Zhang, L.; Yan, J. H. Molybdenum selenide nanosheets surrounding nickel selenides sub-microislands on nickel foam as high-performance bifunctional electrocatalysts for water splitting. Electrochim. Acta 2020, 349, 136336.

    Article  CAS  Google Scholar 

  136. Zhou, Y.-N.; Liu, H.-J.; Shi, Z.-N.; Zhou, J.-C.; Dong, B.; Zhao, H.-Y.; Wang, F.-G.; Yu, J.-F.; Chai, Y.-M. Microwave-assisted molybdenum-nickel alloy for efficient water electrolysis under large current density through spillover and Fe doping. Nano Res. 2022, 15, 5873–5883

    Article  CAS  Google Scholar 

  137. Wang, H. C.; Yang, Y. Q.; Liu, J. J.; Wu, H. J.; Wu, K. L.; Lyu, C.; Wu, J. W.; Lau, W. M.; Wu, Q.; Zheng, J. L. The role of manganese-based catalyst in electrocatalytic water splitting: Recent research and progress. Mater. Today Phys. 2023, 36, 101169.

    Article  CAS  Google Scholar 

  138. Luo, H.; Zhang, X. D.; Zhu, H.; Zhang, K. X.; Yang, F.; Xu, K. W.; Yu, S.; Guo, D. G. Tailoring D-band center over electron traversing effect of NiM@C-CoP (M=Zn, Mo, Ni, Co) for high-performance electrocatalysis hydrogen evolution. J. Mater. Sci. Technol. 2023, 166, 164–172.

    Article  CAS  Google Scholar 

  139. Ren, H. N.; Yu, L. X.; Yang, L. P.; Huang, Z. H.; Kang, F. Y.; Lv, R. T. Efficient electrocatalytic overall water splitting and structural evolution of cobalt iron selenide by one-step electrodeposition. J. Energy Chem. 2021, 60, 194–201.

    Article  CAS  Google Scholar 

  140. Boakye, F. O.; Li, Y.; Owusu, K. A.; Amiinu, I. S.; Cheng, Y. P.; Zhang, H. One- step synthesis of heterostructured cobalt-iron selenide as bifunctional catalyst for overall water splitting. Mater. Chem. Phys. 2022, 275, 125201.

    Article  CAS  Google Scholar 

  141. Liu, Y. X.; Tian, Z. M.; Xu, Q. C.; Yang, Y. X.; Zheng, Y. T.; Pan, H. G.; Chen, J.; Wang, Z.; Zheng, W. J. Controllable synthesis of a loofah-like cobalt-nickel selenide network as an efficient electrocatalyst for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2022, 14, 8963–8973.

    Article  CAS  PubMed  Google Scholar 

  142. Liu, S.; Jiang, Y. M.; Yang, M.; Zhang, M. J.; Guo, Q. F.; Shen, W.; He, R. X.; Li, M. Highly conductive and metallic cobalt-nickel selenide nanorods supported on Ni foam as an efficient electrocatalyst for alkaline water splitting. Nanoscale 2019, 11, 7959–7966.

    Article  CAS  PubMed  Google Scholar 

  143. Ahmadian, F.; Salarvand, V.; Saghafi, M.; Noghani, M. T.; Yousefifar, A. Production and characterization of high-performance cobalt-nickel selenide catalyst with excellent activity in HER. J. Mater. Res. Technol. 2021, 15, 3942–3950.

    Article  CAS  Google Scholar 

  144. Premnath, K.; Arunachalam, P.; Amer, M. S.; Madhavan, J.; Al-Mayouf, A. M. Hydrothermally synthesized nickel molybdenum selenide composites as cost-effective and efficient trifunctional electrocatalysts for water splitting reactions. Int. J. Hydrogen Energy 2019, 44, 22796–22805.

    Article  CAS  Google Scholar 

  145. Kareem, A.; Senthilkumar, S. Defect-induced FexNi1−xSe2 nanoparticles based electrocatalysts towards enhanced hydrogen and oxygen evolution reactions. Int. J. Hydrogen Energy 2023, 48, 7374–7384.

    Article  CAS  Google Scholar 

  146. Feng, Y. F.; Wang, S. J.; Wang, H. Y.; Zhong, Y. J.; Hu, Y. An efficient and stable Ni-Fe selenides/nitrogen-doped carbon nanotubes in situ-derived electrocatalyst for oxygen evolution reaction. J. Mater. Sci. 2020, 55, 13927–13937.

    Article  CAS  Google Scholar 

  147. Lei, X. F.; Xie, X.; Sun, K. J.; Liu, S. T.; Hou, T. Y.; Peng, H.; Ma, G. F. Self- generated FeSe2 and CoSe2 nanoparticles confined in N,S-doped porous carbon as efficient and stable electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2023, 445, 142049.

    Article  CAS  Google Scholar 

  148. Akbar, K.; Jeon, J. H.; Kim, M.; Jeong, J.; Yi, Y.; Chun, S. H. Bifunctional electrodeposited 3D NiCoSe2/nickle foam electrocatalysts for its applications in enhanced oxygen evolution reaction and for hydrazine oxidation. ACS Sustainable Chem. Eng. 2018, 6, 7735–7742.

    Article  CAS  Google Scholar 

  149. Zheng, X. Y.; Peng, Y.; Xu, S. J.; Huang, L. H.; Liu, Y.; Li, D.; Zhu, J. J.; Jiang, D. L. NiCoP-nanocubes-decorated CoSe2nanowire arrays as high-performance electrocatalysts toward oxygen evolution reaction. J. ColloidInterf. Sci. 2023, 648, 141–148.

    Article  CAS  Google Scholar 

  150. Hosseini, H.; Roushani, M. Rational design of hollow core-double shells hybrid nanoboxes and nanopipes composed of hierarchical Cu-Ni-Co selenides anchored on nitrogen-doped carbon skeletons as efficient and stable bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2020, 402, 126174.

    Article  CAS  Google Scholar 

  151. Wang, G. X.; Chen, W.; Chen, G. L.; Huang, J.; Song, C. S.; Chen, D. L.; Du, Y.; Li, C. R.; Ostrikov, K. K. Trimetallic Mo-Ni-Co selenides nanorodelectrocatalysts for highly-efficient and ultrastable hydrogen evolution. Nano Energy 2020, 71, 104637.

    Article  CAS  Google Scholar 

  152. Liu, H. Y.; Qian, X.; Niu, Y. D.; Chen, M.; Xu, C.; Wong, K. Y. Hierarchical Ni-MoSe.@CoSe2 core- shell nanosphere as highly active bifunctional catalyst for efficient dye-sensitized solar cell and alkaline hydrogen evolution. Chem. Eng. J. 2020, 383, 123129.

    Article  CAS  Google Scholar 

  153. Zhang, M. B.; Ma, X.; Zhong, H.; Yang, J.; Cao, Z. F. Morphology Reconstruction and electronic optimization: Nickel-iron selenide nanospheres with Mo-doping as an efficient bifunctional electrocatalyst for overall water splitting. J. Alloys Compd. 2023, 935, 168135.

    Article  CAS  Google Scholar 

  154. Cao, X.; Johnson, E.; Nath, M. Identifying high-efficiency oxygen evolution electrocatalysts from Co-Ni-Cu based selenides through combinatorial electrodeposition. J. Mater. Chem. A 2019, 7, 9877–9889.

    Article  CAS  Google Scholar 

  155. Cao, X.; Johnson, E.; Nath, M. Expanding multinary selenide based high-efficiency oxygen evolution electrocatalysts through combinatorial electrodeposition: Case study with Fe-Cu-Co selenides. ACS Sustainable Chem. Eng. 2019, 7, 9588–9600.

    Article  CAS  Google Scholar 

  156. Guo, Y. J.; Jia, K. L.; Dai, F.; Liu, Y. J.; Zhang, C. R.; Su, J. B.; Wang, K. Hierarchical porous tri-metallic NiCoFe-Se/CFP derived from Ni-Co-Fe Prussian blue analogues as efficient electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 2023, 642, 638–647.

    Article  CAS  PubMed  Google Scholar 

  157. Abdpour, S.; Rademacher, L.; Fetzer, M. N. A.; Beglau, T. H. Y.; Janiak, C. Iron- containing nickel cobalt sulfides, selenides, and sulfoselenides as active and stable electrocatalysts for the oxygen evolution reaction in an alkaline solution. Solids 2023, 4, 181–200.

    Article  CAS  Google Scholar 

  158. Zhang, J.; Zhang, S.; Zhang, Z. H.; Wang, J. F.; Zhang, Z. H.; Cheng, G. H. NiFeCo selenide nanosheets as promising electrocatalysts for oxygen evolution reaction. J. Alloys Compd. 2023, 939, 168753.

    Article  CAS  Google Scholar 

  159. Cao, X.; Hong, Y.; Zhang, N.; Chen, Q. Z.; Masud, J.; Zaeem, M. A.; Nath, M. Phase exploration and identification of multinary transition-metal selenides as high-efficiency oxygen evolution electrocatalysts through combinatorial electrodeposition. ACS Catal. 2018, 8, 8273–8289.

    Article  CAS  Google Scholar 

  160. Dutta, B.; Wu, Y.; Chen, J.; Wang, J.; He, J. K.; Sharafeldin, M.; Kerns, P.; Jin, L.; Dongare, A. M.; Rusling, J. et al. Partial surface selenization of cobalt sulfide microspheres for enhancing the hydrogen evolution reaction. ACS Catal. 2019, 9, 456–465.

    Article  CAS  Google Scholar 

  161. Tian, Y. K.; Zhang, Y. X.; Huang, A. J.; Wen, M.; Wu, Q. S.; Zhao, L.; Wang, M. K.; Shen, Y.; Wang, Z. G.; Fu, Y. Q. Nanostructured Ni2SeS on porous-carbon skeletons as highly efficient electrocatalyst for hydrogen evolution in acidic medium. Inorg. Chem. 2020, 59, 6018–6025.

    Article  CAS  PubMed  Google Scholar 

  162. Maity, S.; Das, B.; Samanta, M.; Das, B. K.; Ghosh, S.; Chattopadhyay, K. K. MoSe2- amorphous CNT hierarchical hybrid core-shell structure for efficient hydrogen evolution reaction. ACS Appl. Energy Mater. 2020, 3, 5067–5076.

    Article  CAS  Google Scholar 

  163. Vikraman, D.; Hussain, S.; Akbar, K.; Adaikalam, K.; Lee, S. H.; Chun, S. H.; Jung, J.; Kim, H. S.; Park, H. J. Facile synthesis of molybdenum diselenide layers for high-performance hydrogen evolution electrocatalysts. ACS Omega 2018, 3, 5799–5807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bose, R.; Jothi, V. R.; Koh, B.; Jung, C.; Yi, S. C. Molybdenum sulphoselenophosphide spheroids as an effective catalyst for hydrogen evolution reaction. Small 2018, 14, 1703862.

    Article  Google Scholar 

  165. Balaji, D.; Arunachalam, P.; Duraimurugan, K.; Madhavan, J.; Theerthagiri, J.; Al-Mayouf, A. M.; Choi, M. Y. Highly efficient Ni0.5Fe0.5Se2/MWCNT electrocatatalyst for hydrogen evolution reaction in acid media. Int. J. Hydrogen Energy 2020, 45, 7838–7847.

    Article  CAS  Google Scholar 

  166. Wang, X. D.; Tian, H.; Pi, M. Y.; Zhang, D. K.; Chen, S. J. Tuning the electronic structure of NiSe2 nanosheets by Mn dopant for hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 12237–12243.

    Article  CAS  Google Scholar 

  167. Chen, Y. L.; Zhang, J. T.; Guo, P.; Liu, H.J.; Wang, Z. J.; Liu, M.; Zhang, T.; Wang, S. T.; Zhou, Y.; Lu, X. Q. et al. Coupled heterostructureof Mo-Fe selenide nanosheets supported on carbon paper as an integrated electrocatalyst for efficient hydrogen evolution. ACS Appl. Mater. Interfaces 2018, 10, 27787–27794.

    Article  CAS  PubMed  Google Scholar 

  168. Zhu, M.; Bai, X. J.; Yan, Q.; Yan, Y. D.; Zhu, K.; Ye, K.; Yan, J.; Cao, D. X.; Huang, X. M.; Wang, G. L. Iron molybdenum selenide supported on reduced graphene oxide as an efficient hydrogen electrocatalyst in acidic and alkaline media. J. Colloid Interf. Sci. 2021, 602, 384–393.

    Article  CAS  Google Scholar 

  169. Xu, P. H.; Bao, Z. Y.; Zhao, Y. J.; Zheng, L. X.; Lv, Z. Q.; Shi, X. W.; Wang, H. E.; Fang, X. S.; Zheng, H. J. Anionic regulation and heteroatom doping of Ni-based electrocatalysts to boost biomass valorization coupled with hydrogen production. Adv. Energy Mater. 2024, 14, 2303557.

    Article  CAS  Google Scholar 

  170. Ao, W. D.; Ren, H. J.; Cheng, C. G.; Fan, Z. S.; Yin, P. Q.; Qin, Q.; Zhang, Q.; Dai, L. Mesoporous PtPb nanosheets as efficient electrocatalysts for hydrogen evolution and ethanol oxidation. Angew. Chem., Int. Ed. 2023, 62, e202305158.

    Article  CAS  Google Scholar 

  171. Chen, K.; Zhang, W.; Bai, Y.; Gong, W. B.; Zhang, N.; Long, R.; Xiong, Y. J. Boosting electrochemical hydrogen evolution by coupling anodically oxidative dehydrogenation of benzylamine to benzonitrile. Chin. Chem. Lett. 2023, 34, 107319.

    Article  CAS  Google Scholar 

  172. Xiao, H.; Xue, S. F.; Zhang, J. J.; Zhao, M.; Ma, J. C.; Chen, S.; Zheng, Z. F.; Jia, J. F.; Wu, H. S. Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation. Chem. Eng. J. 2021, 408, 127271.

    Article  CAS  Google Scholar 

  173. Qiao, W.; Yu, L. C.; Chang, J. F.; Yang, F. L.; Feng, L. G. Efficient Bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting. Chin. J. Catal. 2023, 51, 113–123.

    Article  CAS  Google Scholar 

  174. Peng, Z. M.; Zhang, Q.; Qi, G. C.; Zhang, H.; Liu, Q.; Hu, G. Z.; Luo, J.; Liu, X. J. Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chin. J. Struct. Chem. 2023, in press, DOI: https://doi.org/10.1016/j.cjsc.2023.100191.

  175. Yang, H. H.; Wang, X.; Xia, S. N.; Zhang, S. M.; Zhang, R.; Li, X. X.; Yu, X. F.; Zhang, X.; Bai, L. C. Black phosphorus modulated Ru electrocatalyst for highly efficient and durable seawater splitting. Adv. Energy Mater. 2023, 13, 2302727.

    Article  CAS  Google Scholar 

  176. Li, N. P.; Zhang, L.; Wang, Y.; Zhou, S. X.; Zhang, Y.; Abdukayum, A.; Jin, Z.; Zhang, H.; Hu, G. Z. Effect of in-plane Mott-Schottky on the hydroxyl deprotonation in MoS2@Co3S4/NC heterostructure for efficient overall water splitting. J. ColloidInterf. Sci. 2023, 649, 125–131.

    Article  CAS  Google Scholar 

  177. Liu, M. M.; Zhang, C. Y.; Han, A. L.; Wang, L.; Sun, Y. J.; Zhu, C. N.; Li, R.; Ye, S. Modulation of morphology and electronic structure on MoS2-based electrocatalysts for water splitting. Nano Res. 2022, 15, 6862–6887.

    Article  CAS  Google Scholar 

  178. Li, X. M.; Zhou, Y. F.; Feng, C. R.; Wei, R.; Hao, X. G.; Tang, K. Y.; Guan, G. Q. High entropy materials based electrocatalysts for water splitting: Synthesis strategies, catalytic mechanisms, and prospects. Nano Res. 2023, 16, 4411–4437.

    Article  Google Scholar 

  179. Lyu, C.; Zheng, J. L.; Zhang, R.; Zou, R. Q.; Liu, B.; Zhou, W. Homologous Co3O4‖CoPnanowires grown on carbon cloth as a high-performance electrode pair for Triclosan degradation and hydrogen evolution. Mater.Chem.Front. 2018, 2, 323–330.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. U2002213), Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region (No. 2023D14002), Open Foundation of Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials (No. 2022GXYSOF10), Open Fund of the Hubei Longzhong Laboratory (No. 2022KF07), Science Foundation of Donghai Laboratory (No. DH-2022KF0314), and Double-First Class University Plan (No. C176220100042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuxing Zhou, Abdukader Abdukayum or Guangzhi Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Gao, S., Liu, X. et al. Recent achievements in selenium-based transition metal electrocatalysts for pH-universal water splitting. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6485-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6485-9

Keywords

Navigation