Skip to main content
Log in

Extremely long-lived charge separation and related carrier spin excitation in CsPbBr3 perovskite quantum dots with an electron acceptor benzoquinone

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The formation and evolution dynamics of charge separation (CS) in a complex of CsPbBr3 quantum dots (QDs) and 1,4-benzoquinone (BQ) molecules are measured with a high-sensitive pump-orientation-probe technique by which spin signals of the CS state are monitored. An extraordinarily long-lasting CS is observed, with a characteristic time being up to a dozen days under ambient conditions, due to electron transferring from QDs to BQ molecules. Upon the long-lived CS, spin coherences of both electrons and holes are detected at room temperature, with a spin dephasing time of 420 and 26 ps, respectively. The long-lived CS and spin coherence have important implications for applications of perovskite nanomaterials in photocatalysis, photovoltaics, and spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, G. R.; Rivarola, F. W. R.; Davis, N. J. L. K.; Bai, S.; Jellicoe, T. C.; de la Pena, F.; Hou, S. C.; Ducati, C.; Gao, F.; Friend, R. H. et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 2016, 28, 3528–3534.

    Article  CAS  Google Scholar 

  2. Meyns, M.; Perálvarez, M.; Heuer-Jungemann, A.; Hertog, W.; Ibáñez, M.; Nafria, R.; Genç, A.; Arbiol, J.; Kovalenko, M. V.; Carreras, J. et al. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Appl. Mater. Interfaces 2016, 2, 19579–19586.

    Article  Google Scholar 

  3. Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

    Article  CAS  Google Scholar 

  4. Zhang, X. Y.; Lin, H.; Huang, H.; Reckmeier, C.; Zhang, Y.; Choy, W. C. H.; Rogach, A. L. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 2016, 16, 1415–1420.

    Article  CAS  Google Scholar 

  5. Veldhuis, S. A.; Ng, Y. F.; Ahmad, R.; Bruno, A.; Jamaludin, N. F.; Damodaran, B.; Mathews, N.; Mhaisalkar, S. G. Crown ethers enable room-temperature synthesis of CsPbBr3 quantum dots for light-emitting diodes. ACS Energy Lett. 2018, 3, 526–531.

    Article  CAS  Google Scholar 

  6. Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Sun, H. D. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.

    Article  CAS  Google Scholar 

  7. Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low- threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.

    Article  CAS  Google Scholar 

  8. Akkerman, Q. A.; Gandini, M.; Di Stasio, F.; Rastogi, P.; Palazon, F.; Bertoni, G.; Ball, J. M.; Prato, M.; Petrozza, A.; Manna, L. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2017, 2, 16194.

    Article  CAS  Google Scholar 

  9. Zhao, Q.; Hazarika, A.; Chen, X. H.; Harvey, S. P.; Larson, B. W.; Teeter, G. R.; Liu, J.; Song, T.; Xiao, C. X.; Shaw, L. et al. High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 2019, 10, 2842

    Article  Google Scholar 

  10. Kong, Z. C.; Liao, J. F.; Dong, Y. J.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 2018, 3, 2656–2662.

    Article  CAS  Google Scholar 

  11. Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.

    Article  CAS  Google Scholar 

  12. Gao, G.; Xi, Q. Y.; Zhou, H.; Zhao, Y. X.; Wu, C. Q.; Wang, L. D.; Guo, P. R.; Xu, J. W. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 2017, 9, 12032–12038.

    Article  CAS  Google Scholar 

  13. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  CAS  Google Scholar 

  14. Liu, F.; Zhang, Y. H.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 2017, 11, 10373–10383.

    Article  CAS  Google Scholar 

  15. Kang, J.; Wang, L. W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 2017, 8, 489–493.

    Article  CAS  Google Scholar 

  16. Dirin, D. N.; Protesescu, L.; Trummer, D.; Kochetygov, I. V.; Yakunin, S.; Krumeich, F.; Stadie, N. P.; Kovalenko, M. V. Harnessing defect-tolerance at the nanoscale: Highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett. 2016, 16, 5866–5874.

    Article  CAS  Google Scholar 

  17. Yettapu, G. R.; Talukdar, D.; Sarkar, S.; Swarnkar, A.; Nag, A.; Ghosh, P.; Mandal, P. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 2016, 16, 4838–4848.

    Article  CAS  Google Scholar 

  18. Yanagi, R.; Zhao, T. S.; Solanki, D.; Pan, Z. H.; Hu, S. Charge separation in photocatalysts: Mechanisms, physical parameters, and design principles. ACS Energy Lett. 2022, 7, 432–452.

    Article  CAS  Google Scholar 

  19. Hutter, E. M.; Sutton, R. J.; Chandrashekar, S.; Abdi-Jalebi, M.; Stranks, S. D.; Snaith, H. J.; Savenije, T. J. Vapour-deposited cesium lead iodide perovskites: Microsecond charge carrier lifetimes and enhanced photovoltaic performance. ACS Energy Lett. 2017, 2, 1901–1908.

    Article  CAS  Google Scholar 

  20. Huang, H. W.; Pradhan, B.; Hofkens, J.; Roeffaers, M. B. J.; Steele, J. A. Solar- driven metal halide perovskite photocatalysis: Design, stability, and performance. ACS Energy Lett. 2020, 5, 1107–1123.

    Article  CAS  Google Scholar 

  21. DuBose, J. T.; Kamat, P. V. Efficacy of perovskite photocatalysis: Challenges to overcome. ACS Energy Lett. 2022, 7, 1994–2011.

    Article  CAS  Google Scholar 

  22. Maity, P.; Naphade, R.; Gutiérrez-Arzaluz, L.; Nematulloev, S.; Thomas, S.; Mir, W. J.; Yorov, K. E.; Alshareef, H. N.; Bakr, O. M.; Mohammed, O. F. Exceeding 100 us charge carrier separation in perovskite mediated by rhodamine 6G. Adv. Opt. Mater., in press, https://doi.org/10.1002/adom.202300941.

  23. Wu, K. F.; Liang, G. J.; Shang, Q. Y.; Ren, Y. P.; Kong, D. G.; Lian, T. Q. Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc. 2015, 137, 12792–12795.

    Article  CAS  Google Scholar 

  24. Kobosko, S. M.; DuBose, J. T.; Kamat, P. V. Perovskite photocatalysis. Methyl viologen induces unusually long-lived charge carrier separation in CsPbBr3 nanocrystals. ACS Energy Lett. 2020, 5, 221–223.

    Article  CAS  Google Scholar 

  25. Luo, X.; Liang, G. J.; Wang, J. H.; Liu, X.; Wu, K. F. Picosecond multi-hole transfer and microsecond charge-separated states at the perovskite nanocrystal/tetracene interface. Chem. Sci. 2019, 10, 2459–2464.

    Article  CAS  Google Scholar 

  26. Wang, K.; Lu, H. P.; Zhu, X. L.; Lin, Y. X.; Beard, M. C.; Yan, Y.; Chen, X. H. Ultrafast reaction mechanisms in perovskite based photocatalytic C-C coupling. ACS Energy Lett. 2020, 5, 566–571.

    Article  CAS  Google Scholar 

  27. Mandal, S.; George, L.; Tkachenko, N. V. Charge transfer dynamics in CsPbBr3 perovskite quantum dots-anthraquinone/fullerene (C60) hybrids. Nanoscale 2019, 11, 862–869.

    Article  CAS  Google Scholar 

  28. DuBose, J. T.; Kamat, P. V. Probing perovskite photocatalysis. Interfacial electron transfer between CsPbBr3 and ferrocene redox couple. J. Phys. Chem. Lett. 2019, 10, 6074–6080.

    Article  CAS  Google Scholar 

  29. Feng, D. H.; Yakovlev, D. R.; Dubertret, B.; Bayer, M. Charge separation dynamics in CdSe/CdS core/shell nanoplatelets addressed by coherent electron spin precession. ACS Nano 2020, 14, 7237–7244.

    Article  CAS  Google Scholar 

  30. Feng, D. H.; Yakovlev, D. R.; Pavlov, V. V.; Rodina, A. V.; Shornikova, E. V.; Mund, J.; Bayer, M. Dynamic evolution from negative to positive photocharging in colloidal CdS quantum dots. Nano Lett. 2017, 17, 2844–2851.

    Article  CAS  Google Scholar 

  31. Li, X.; Feng, D. H.; Tong, H. F.; Jia, T. Q.; Deng, L.; Sun, Z. R.; Xu, Z. Z. Hole surface trapping dynamics directly monitored by electron spin manipulation in CdS nanocrystals. J. Phys. Chem. Lett. 2014, 5, 4310–4316.

    Article  CAS  Google Scholar 

  32. Chen, C.; Liang, P.; Hu, R. R.; Jia, T. Q.; Sun, Z. R.; Feng, D. H. Pump-orientation-probe technique and its applications. Acta Phys. Sin. 2018, 67, 097201.

    Article  Google Scholar 

  33. Huxter, V. M.; Kovalevskij, V.; Scholes, G. D. Dynamics within the exciton fine structure of colloidal CdSe quantum dots. J. Phys. Chem. B 2005, 109, 20060–20063.

    Article  CAS  Google Scholar 

  34. Wu, Z.; Zhang, Y. Y.; Hu, R. R.; Jiang, M. Z.; Liang, P.; Yang, Q.; Deng, L.; Jia, T. Q.; Sun, Z. R.; Feng, D. H. Hole-acceptor-manipulated electron spin dynamics in CdSe colloidal quantum dots. J. Phys. Chem. Lett. 2021, 12, 2126–2132.

    Article  CAS  Google Scholar 

  35. Zhang, Y. Y.; Jiang, M. Z.; Wu, Z.; Yang, Q.; Men, Y. M.; Cheng, L.; Liang, P.; Hu, R. R.; Jia, T. Q.; Sun, Z. R. et al. Hyperfine-induced electron-spin dephasing in negatively charged colloidal quantum dots: A survey of size dependence. J. Phys. Chem. Lett. 2021, 12, 9481–9487.

    Article  CAS  Google Scholar 

  36. Hu, R. R.; Yakovlev, D. R.; Liang, P.; Qiang, G.; Chen, C.; Jia, T. Q.; Sun, Z. R.; Bayer, M.; Feng, D. H. Origin of two larmor frequencies in the coherent spin dynamics of colloidal CdSe quantum dots revealed by controlled charging. J. Phys. Chem. Lett. 2019, 10, 3681–3687.

    Article  CAS  Google Scholar 

  37. Hu, R. R.; Wu, Z.; Zhang, Y. Y.; Yakovlev, D. R.; Liang, P.; Qiang, G.; Guo, J. X.; Jia, T. Q.; Sun, Z. R.; Bayer, M. et al. Long-lived negative photocharging in colloidal CdSe quantum dots revealed by coherent electron spin precession. J. Phys. Chem. Lett. 2019, 10, 4994–4999.

    Article  CAS  Google Scholar 

  38. Crane, M. J.; Jacoby, L. M.; Cohen, T. A.; Huang, Y. P.; Luscombe, C. K.; Gamelin, D. R. Coherent spin precession and lifetime-limited spin dephasing in CsPbBr3 perovskite nanocrystals. Nano Lett. 2020, 20, 8626–8633.

    Article  CAS  Google Scholar 

  39. Grigoryev, P. S.; Belykh, V. V.; Yakovlev, D. R.; Lhuillier, E.; Bayer, M. Coherent spin dynamics of electrons and holes in CsPbBr3 colloidal nanocrystals. Nano Lett. 2021, 21, 8481–8487.

    Article  CAS  Google Scholar 

  40. Kirstein, E.; Kopteva, N. E.; Yakovlev, D. R.; Zhukov, E. A.; Kolobkova, E. V.; Kuznetsova, M. S.; Belykh, V. V.; Yugova, I. A.; Glazov, M. M.; Bayer, M. et al. Mode locking of hole spin coherences in CsPb(Cl, Br)3 perovskite nanocrystals. Nat. Commun. 2023, 11, 699.

    Article  Google Scholar 

  41. Lin, X. Y.; Han, Y. Y.; Zhu, J. Y.; Wu, K. F. Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots. Nat. Nanotechnol. 2023, 18, 124–130.

    Article  CAS  Google Scholar 

  42. Li, Y. L.; Luo, X.; Liu, Y., Lu, X., Wu, K. F. Size- and composition-dependent exciton spin relaxation in lead halide perovskite quantum dots. ACS Energy Lett. 2020, 5, 1701–1708.

    Article  CAS  Google Scholar 

  43. Ravi, V. K.; Markad, G. B.; Nag, A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Lett. 2016, 1, 665–671.

    Article  CAS  Google Scholar 

  44. Sarkar, S.; Ravi, V. K.; Banerjee, S.; Yettapu, G. R.; Markad, G. B.; Nag, A.; Mandal, P. Terahertz spectroscopic probe of hot electron and hole transfer from colloidal CsPbBr3 perovskite nanocrystals. Nano Lett. 2017, 17, 5402–5407.

    Article  CAS  Google Scholar 

  45. Shang, Q.; Kaledin, A. L.; Li, Q. Y.; Lian, T. Q. Size dependent charge separation and recombination in CsPbI3 perovskite quantum dots. J. Chem. Phys. 2019, 151, 074705.

    Article  Google Scholar 

  46. Feng, D. H.; Shan, L. F.; Jia, T. Q.; Pan, X. Q.; Tong, H. F.; Deng, L.; Sun, Z. R.; Xu, Z. Z. Optical manipulation of electron spin coherence in colloidal CdS quantum dots. Appl. Phys. Lett. 2013, 102, 062408.

    Article  Google Scholar 

  47. Belykh, V. V.; Yakovlev, D. R.; Glazov, M. M.; Grigoryev, P. S.; Hussain, M.; Rautert, J.; Dirin, D. N.; Kovalenko, M. V.; Bayer, M. Coherent spin dynamics of electrons and holes in CsPbBr3 perovskite crystals. Nat. Commun. 2019, 10, 673.

    Article  CAS  Google Scholar 

  48. Fu, M.; Tamarat, P.; Huang, H.; Even, J.; Rogach, A. L.; Lounis, B. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett. 2017, 17, 2895–2901.

    Article  CAS  Google Scholar 

  49. Canneson, D.; Shornikova, E. V.; Yakovlev, D. R.; Rogge, T.; Mitioglu, A. A.; Ballottin, M. V.; Christianen, P. C. M.; Lhuillier, E.; Bayer, M.; Biadala, L. Negatively charged and dark excitons in CsPbBr3 perovskite nanocrystals revealed by high magnetic fields. Nano Lett. 2017, 17, 6177–6183.

    Article  CAS  Google Scholar 

  50. Meliakov, S. R.; Zhukov, E. A.; Kulebyakina, E. V.; Belykh, V. V.; Yakovlev, D. R. Coherent spin dynamics of electrons in CsPbBr3 perovskite nanocrystals at room temperature. Nanomaterials 2023, 13, 2454.

    Article  CAS  Google Scholar 

  51. Dey, A.; Strohmair, S.; He, F.; Akkerman, Q. A.; Feldmann, J. Fast electron and slow hole spin relaxation in CsPbI3 nanocrystals. Appl. Phys. Lett. 2022, 121, 201106.

    Article  CAS  Google Scholar 

  52. Mandal, S.; Tkachenko, N. V. Multiphoton excitation of CsPbBr3 perovskite quantum dots (PQDs): How many electrons can one PQD donate to multiple molecular acceptors. J. Phys. Chem. Lett. 2019, 10, 2775–2781.

    Article  CAS  Google Scholar 

  53. Wang, J. H.; Ding, T.; Leng, J.; Jin, S. Y.; Wu, K. F. “Intact” carrier doping by pump-pump-probe spectroscopy in combination with interfacial charge transfer: A case study of CsPbBr3 nanocrystals. J. Phys. Chem. Lett. 2018, 9, 3372–3377.

    Article  CAS  Google Scholar 

  54. Nakahara, S.; Tahara, H.; Yumoto, G.; Kawawaki, T.; Saruyama, M.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Suppression of trion formation in CsPbBr3 perovskite nanocrystals by postsynthetic surface modification. J. Phys. Chem. C 2018, 122, 22188–22193.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dmitri R. Yakovlev for valuable discussions. This work is supported by the National Natural Science Foundation of China (Nos. 12174108, 91950112, 12104311, 12074123, and 12034008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Feng.

Electronic supplementary material

12274_2024_6466_MOESM1_ESM.pdf

Extremely long-lived charge separation and related carrier spin excitation in CsPbBr3 perovskite quantum dots with an electron acceptor benzoquinone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Hu, R., Jiang, M. et al. Extremely long-lived charge separation and related carrier spin excitation in CsPbBr3 perovskite quantum dots with an electron acceptor benzoquinone. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6466-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6466-z

Keywords

Navigation