Skip to main content
Log in

Cationic engineered nanodiamonds for efficient antibacterial surface with strong wear resistance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The spread of diseases caused by bacterial adhesion and immobilization in public places constitutes a serious threat to public health. Prevention of bacteria spread by the construction of an antibacterial surface takes precedence over post-infection treatment. Herein, we demonstrate an effective antibacterial surface with strong wear resistance by constructing cationic engineered nanodiamonds (C-NDs). The C-NDs with positive surface potentials interact effectively with bacteria through electrostatic interactions, where the C-NDs act on the phospholipid bilayer and lead to bacterial membrane collapse and rupture through hydrogen bonding and residual surface oxygen-containing reactive groups. In this case, bactericidal rate of 99.99% and bacterial biofilm inhibition rate of more than 80% can be achieved with the C-NDs concentration of 1 mg/mL. In addition, the C-NDs show outstanding antibacterial stability, retaining over 87% of the antibacterial effect after stimulation by adverse environments of heat, acid, and external abrasion. Therefore, an antibacterial surface with high wear resistance obtained by integrating C-NDs with commercial plastics has been demonstrated. The antibacterial surface with a mass fraction of 1 wt.% C-NDs improved abrasion resistance by 3981 times, with 99% killing of adherent bacteria. This work provides an effective strategy for highly efficient antibacterial wear-resistant surface, showing great practical applications in public health environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hughes, K. T.; Berg, H. C. The bacterium has landed. Science 2017, 358, 446–447.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  2. Bjarnsholt, T.; Ciofu, O.; Molin, S.; Givskov, M.; Høiby, N. Applying insights from biofilm biology to drug development—Can a new approach be developed. Nat. Rev. Drug Discov. 2013, 12, 791–808.

    Article  PubMed  CAS  Google Scholar 

  3. Costerton, J. W.; Stewart, P. S.; Greenberg, E. P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322.

    Article  ADS  PubMed  CAS  Google Scholar 

  4. Dumas, O.; Wiley, A. S.; Quinot, C.; Varraso, R.; Zock, J. P.; Henneberger, P. K.; Speizer, F. E.; Le Moual, N.; Camargo, C. A. Occupational exposure to disinfectants and asthma control in US nurses. Eur. Respir. J. 2017, 50, 1700237.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Banerjee, I.; Pangule, R. C.; Kane, R. S. Antifouling Coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23, 690–718.

    Article  PubMed  CAS  Google Scholar 

  6. Imani, S. M.; Ladouceur, L.; Marshall, T.; Maclachlan, R.; Soleymani, L.; Didar, T. F. Antimicrobial nanomaterials and coatings: Current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano 2020, 14, 12341–12369.

    Article  PubMed  CAS  Google Scholar 

  7. Rigo, S.; Cai, C.; Gunkel-Grabole, G.; Maurizi, L.; Zhang, X. Y.; Xu, J.; Palivan, C. G. Nanoscience-based strategies to engineer antimicrobial surfaces. Adv. Sci. 2018, 5, 1700892.

    Article  Google Scholar 

  8. Riduan, S. N.; Zhang, Y. G. Nanostructured surfaces with multimodal antimicrobial action. Acc. Chem. Res. 2021, 54, 4508–4517.

    Article  PubMed  CAS  Google Scholar 

  9. Yang, L.; Wang, C. P.; Li, L.; Zhu, F.; Ren, X. C.; Huang, Q.; Cheng, Y. Y.; Li, Y. W. Bioinspired integration of naturally occurring molecules towards universal and smart antibacterial coatings. Adv. Funct. Mater. 2022, 32, 2108749.

    Article  CAS  Google Scholar 

  10. Zhao, W. B.; Liu, K. K.; Wang, Y.; Li, F. K.; Guo, R.; Song, S. Y.; Shan, C. X. Antibacterial carbon dots: Mechanisms, design, and applications. Adv. Healthc. Mater. 2023, 12, 2300324.

    Article  CAS  Google Scholar 

  11. Jung, S.; Cui, Y. F.; Barnes, M.; Satam, C.; Zhang, S. X.; Chowdhury, R. A.; Adumbumkulath, A.; Sahin, O.; Miller, C.; Sajadi, S. M. et al. Multifunctional bio-nanocomposite coatings for perishable fruits. Adv. Mater. 2020, 32, 1908291.

    Article  CAS  Google Scholar 

  12. Zhao, W. B.; Du, M. R.; Liu, K. K.; Zhou, R.; Ma, R. N.; Jiao, Z.; Zhao, Q.; Shan, C. X. Hydrophilic ZnO nanoparticles@calcium alginate composite for water purification. ACS Appl. Mater. Interfaces 2020, 12, 13305–13315.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, Y.; Yuan, Q.; Li, M. Q.; Tang, Y. L. Cationic conjugated microporous polymers coating for dual-modal antimicrobial inactivation with self-sterilization and reusability functions. Adv. Funct. Mater. 2023, 33, 2213440.

    Article  CAS  Google Scholar 

  14. Yang, L.; Li, L.; Li, H. T.; Wang, T. Y.; Ren, X. C.; Cheng, Y. Y.; Li, Y. W.; Huang, Q. Layer-by-layer assembled smart antibacterial coatings via mussel-inspired polymerization and dynamic covalent chemistry. Adv. Healthc. Mater. 2022, 11, 2200112.

    Article  CAS  Google Scholar 

  15. Qian, J.; Dong, Q.; Chun, K.; Zhu, D. Y.; Zhang, X.; Mao, Y. M.; Culver, J. N.; Tai, S.; German, J. R.; Dean, D. P. et al. Highly stable, antiviral, antibacterial cotton textiles via molecular engineering. Nat. Nanotechnol. 2023, 18, 168–176.

    Article  ADS  PubMed  CAS  Google Scholar 

  16. Yang, M.; Qiu, S.; Coy, E.; Li, S.; Zaleski, K.; Zhang, Y.; Pan, H.; Wang, G. NIR-responsive TiO2 biometasurfaces: Toward in situ photodynamic antibacterial therapy for biomedical implants. Adv. Mater. 2022, 34, 2106314

    Article  CAS  Google Scholar 

  17. Pallavicini, P.; Dacarro, G.; Diaz-Fernandez, Y. A.; Taglietti, A. Coordination chemistry of surface-grafted ligands for antibacterial materials. Coord. Chem. Rev. 2014, 275, 37–53.

    Article  CAS  Google Scholar 

  18. Chen, P. Y.; Lang, J. Y.; Zhou, Y. L.; Khlyustova, A.; Zhang, Z. Y.; Ma, X. J.; Liu, S.; Cheng, Y. F.; Yang, R. An imidazolium-based zwitterionic polymer for antiviral and antibacterial dual functional coatings. Sci. Adv. 2022, 8, eabl8812.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  19. Xu, Q.; A, S. G.; Venet, M.; Gao, Y. S.; Zhou, D. Z.; Wang, W.; Zeng, M.; Rotella, C.; Li, X. L.; Wang, X. et al. Bacteria-resistant single chain cyclized/knotted polymer coatings. Angew. Chem., Int. Ed. 2019, 58, 10616–10620.

    Article  CAS  Google Scholar 

  20. Wang, Y.; Liu, K. K.; Zhao, W. B.; Sun, J. L.; Chen, X. X.; Zhang, L. L.; Cao, Q.; Zhou, R.; Dong, L.; Shan, C. X. Antibacterial fabrics based on synergy of piezoelectric effect and physical interaction. Nano Today 2023, 48, 101737.

    Article  CAS  Google Scholar 

  21. Boland, J. Diamond gets harder. Nature 2014, 510, 220–221.

    Article  ADS  PubMed  CAS  Google Scholar 

  22. Rath, P.; Kahl, O.; Ferrari, S.; Sproll, F.; Lewes-Malandrakis, G.; Brink, D.; Ilin, K.; Siegel, M.; Nebel, C.; Pernice, W. Superconducting single-photon detectors integrated with diamond nanophotonic circuits. Light: Sci. Appl. 2015, 4, e338.

    Article  ADS  CAS  Google Scholar 

  23. Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotecheol. 2012, 7, 11–23.

    Article  ADS  CAS  Google Scholar 

  24. Mayerhoefer, E.; Krueger, A. Surface control of nanodiamond: From homogeneous termination to complex functional architectures for biomedical applications. Acc. Chem. Res. 2022, 55, 3594–3604.

    Article  PubMed  CAS  Google Scholar 

  25. Dong, L.; Zhu, G. H.; Zang, J. B.; Wang, Y. H. Research progress on electrochemical property and surface modifications of nanodiamond powders. Funct. Diamond 2023, 3, 2234469.

    Article  Google Scholar 

  26. Nunes-Pereira, J.; Costa, P.; Fernandes, L.; Carvalho, E. O.; Fernandes, M. M.; Carabineiro, S. A. C.; Buijnsters, J. G.; Tubio, C. R.; Lanceros-Mendez, S. Antimicrobial and antibiofilm properties of fluorinated polymers with embedded functionalized nanodiamonds. ACS Appl. Polym. Mater. 2020, 2, 5014–5024.

    Article  CAS  Google Scholar 

  27. Rifai, A.; Tran, N.; Reineck, P.; Elbourne, A.; Mayes, E.; Sarker, A.; Dekiwadia, C.; Ivanova, E. P.; Crawford, R. J.; Ohshima, T. et al. Engineering the interface: Nanodiamond coating on 3D-printed titanium promotes mammalian cell growth and inhibits Staphylococcus aureus colonization. ACS Appl. Mater. Interfaces 2019, 11, 24588–24597.

    Article  PubMed  CAS  Google Scholar 

  28. Shirani, A.; Hu, Q. C.; Su, Y. C.; Joy, T.; Zhu, D. H.; Berman, D. Combined tribological and bactericidal effect of nanodiamonds as a potential lubricant for artificial joints. ACS Appl. Mater. Interfaces 2019, 11, 43500–43508.

    Article  PubMed  CAS  Google Scholar 

  29. Karami, P.; Aktij, S. A.; Khorshidi, B.; Firouzjaei, M. D.; Asad, A.; Elliott, M.; Rahimpour, A.; Soares, J. B. P.; Sadrzadeh, M. Nanodiamond-decorated thin film composite membranes with antifouling and antibacterial properties. Desalination 2022, 522, 115436.

    Article  CAS  Google Scholar 

  30. Yang, Y.; Zhang, Y. Z.; Wang, L. R.; Miao, Z. M.; Zhou, K. X.; Yang, Q. Z.; Yu, J.; Li, X. H.; Zhang, Y. F. Antibacterial property of oxygen-terminated carbon bonds. Adv. Funct. Mater. 2022, 32, 2200447.

    Article  CAS  Google Scholar 

  31. Wehling, J.; Dringen, R.; Zare, R. N.; Maas, M.; Rezwan, K. Bactericidal activity of partially oxidized nanodiamonds. ACS Nano 2014, 8, 6475–6483.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang, K. K.; Zhao, Q.; Qin, S. R.; Fu, Y.; Liu, R. Z.; Zhi, J. F.; Shan, C. X. Nanodiamonds conjugated upconversion nanoparticles for bio-imaging and drug delivery. J. Colloid Interface Sci. 2019, 537, 316–324.

    Article  ADS  PubMed  CAS  Google Scholar 

  33. Fang, J.; Wang, H.; Bao, X. F.; Ni, Y. X.; Teng, Y.; Liu, J. S.; Sun, X. L.; Sun, Y.; Li, H. D.; Zhou, Y. M. Nanodiamond as efficient peroxidase mimic against periodontal bacterial infection. Carbon 2020, 169, 370–381.

    Article  CAS  Google Scholar 

  34. Ginés, L.; Mandal, S.; Ashek-I-Ahmed, A. I. A.; Cheng, C. L.; Sow, M.; Williams, O. A. Positive zeta potential of nanodiamonds. Nanoscale 2017, 9, 12549–12555.

    Article  PubMed  Google Scholar 

  35. Barras, A.; Martin, F. A.; Bande, O.; Baumann, J. S.; Ghigo, J. M.; Boukherroub, R.; Beloin, C.; Siriwardena, A.; Szunerits, S. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives. Nanoscale 2013, 5, 2307–2316.

    Article  ADS  PubMed  CAS  Google Scholar 

  36. Li, J. S.; Sun, X. H.; Dai, J. J.; Yang, J. M.; Li, L.; Zhang, Z. B.; Guo, J. D.; Bai, S. M.; Zheng, Y. Q.; Shi, X. N. Biomimetic multifunctional hybrid sponge via enzymatic cross-linking to accelerate infected burn wound healing. Int. J. Biol. Macromol. 2023, 225, 90–102.

    Article  PubMed  CAS  Google Scholar 

  37. Guo, C.; Zhang, J.; Feng, X. J.; Du, Z. G.; Jiang, Y. Z.; Shi, Y. D.; Yang, G. H.; Tan, L. Polyhexamethylene biguanide chemically modified cotton with desirable hemostatic, inflammation-reducing, intrinsic antibacterial property for infected wound healing. Chin. Chem. Lett. 2022, 33, 2975–2981.

    Article  CAS  Google Scholar 

  38. Zhao, W. B.; Wang, R. T.; Liu, K. K.; Du, M. R.; Wang, Y.; Wang, Y. Q.; Zhou, R.; Liang, Y. C.; Ma, R. N.; Sui, L. Z. et al. Near-infrared carbon nanodots for effective identification and inactivation of Gram-positive bacteria. Nano Res. 2022, 15, 1699–1708.

    Article  ADS  CAS  Google Scholar 

  39. Hou, Z. S.; Wang, Z. Z.; Wang, P. W.; Chen, F.; Luo, X. L. Near-infrared light-triggered mild-temperature photothermal effect of nanodiamond with functional groups. Diamond Relat. Mater. 2022, 123, 108831.

    Article  ADS  CAS  Google Scholar 

  40. Han, J. F.; Lou, Q.; Ding, Z. Z.; Zheng, G. S.; Ni, Q. C.; Song, R. W.; Liu, K. K.; Zang, J. H.; Dong, L.; Shen, C. L. et al. Chemiluminescent carbon nanodots for dynamic and guided antibacteria. Light: Sci. Appl. 2023, 12, 104.

    Article  ADS  PubMed  CAS  Google Scholar 

  41. Ryu, T. K.; Baek, S. W.; Kang, R. H.; Choi, S. W. Selective photothermal tumor therapy using nanodiamond-based nanoclusters with folic acid. Adv. Funct. Mater. 2016, 26, 6428–6436.

    Article  CAS  Google Scholar 

  42. Yun, T. H.; Ahn, G. Y.; Choi, I.; Bae, Y. J.; Hwang, K. C.; Kang, S. H.; Choi, S. W. Fabrication of nanodiamonds modified with hyaluronic acid and chlorin e6 for selective photothermal and photodynamic tumor therapy. Polym. Adv. Technol. 2020, 31, 2990–2998.

    Article  CAS  Google Scholar 

  43. Song, S. Y.; Liu, K. K.; Cao, Q.; Mao, X.; Zhao, W. B.; Wang, Y.; Liang, Y. C.; Zang, J. H.; Lou, Q.; Dong, L. et al. Ultraviolet phosphorescent carbon nanodots. Light: Sci. Appl. 2022, 11, 146.

    Article  ADS  PubMed  CAS  Google Scholar 

  44. Pei, D. H. How do biomolecules cross the cell membrane. Acc. Chem. Res. 2022, 55, 309–318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Flemming, H. C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633.

    Article  PubMed  CAS  Google Scholar 

  46. Chambers, J. R.; Sauer, K. Small RNAs and their role in biofilm formation. Trends Microbiol. 2013, 21, 39–49.

    Article  PubMed  CAS  Google Scholar 

  47. Flemming, H. C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S. A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575.

    Article  PubMed  CAS  Google Scholar 

  48. Curry, J. F.; Babuska, T. F.; Furnish, T. A.; Lu, P.; Adams, D. P.; Kustas, A. B.; Nation, B. L.; Dugger, M. T.; Chandross, M.; Clark, B. G. et al. Achieving ultralow wear with stable nanocrystalline metals. Adv. Mater. 2018, 30, 1802026.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (Nos. 12274378, 62075198 and U21A2070), Outstanding Youth Foundation of Henan (No. 222300420087) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai-Kai Liu or Chong-Xin Shan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, FK., Zhao, WB., Wang, Y. et al. Cationic engineered nanodiamonds for efficient antibacterial surface with strong wear resistance. Nano Res. 17, 939–948 (2024). https://doi.org/10.1007/s12274-024-6417-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6417-8

Keywords

Navigation