Skip to main content
Log in

Towards growth of pure AB-stacked bilayer graphene single crystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Given its intriguing band structure and unique tunable bandgap, AB-stacked bilayer graphene has great potentials in the applications of high-end electronics, optoelectronics and semiconductors. The epitaxial growth of AB-stacked single-crystal bilayer graphene films requires a strict AB-stacked lattice, identical orientations and seamless stitching of bilayer graphene islands. However, the particles inevitably present on the metal surface that produced during high temperature growth would induce random orientations, twisted stacking islands, and uncontrollable multilayers, which is a great challenge to overcome. Here, we propose a heat-resisting-box assisted strategy to produce nearly pure AB-stacked bilayer graphene single-crystal films on Cu/Ni (111) foils. With our technique, the particles on the Cu/Ni (111) surface are effectively eliminated, which greatly minimizes the occurrence of randomly twisted islands and uncontrollable multilayers. The as-grown AB-stacked bilayer graphene films show > 99% alignment and > 99% AB stacking order. Our work provides a promising method towards the growth of pure AB-stacked bilayer graphene single crystals and would accelerate its device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018, 118, 9281–9343.

    Article  CAS  PubMed  Google Scholar 

  2. Xia, F. N.; Farmer, D. B.; Lin, Y. M.; Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010, 10, 715–718.

    Article  CAS  PubMed  Google Scholar 

  3. Chen, Y. C.; Cao, T.; Chen, C.; Pedramrazi, Z.; Haberer, D.; De Oteyza, D. G.; Fischer, F. R.; Louie, S. G.; Crommie, M. F. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2015, 10, 156–160.

    Article  CAS  PubMed  Google Scholar 

  4. Xu, X. Z.; Liu, C.; Sun, Z. H.; Cao, T.; Zhang, Z. H.; Wang, E. G.; Liu, Z. F.; Liu, K. H. Interfacial engineering in graphene bandgap. Chem. Soc. Rev. 2018, 47, 3059–3099.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, S. Y.; Gweon, G. H.; Fedorov, A. V.; First, P. N.; De Heer, W. A.; Lee, D. H.; Guinea, F.; Neto, A. H. C.; Lanzara, A. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 2007, 6, 770–775.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, Z. L.; Qi, Y.; Chen, X. D.; Zhang, Y. F.; Liu, Z. F. Direct CVD growth of graphene on traditional glass: Methods and mechanisms. Adv. Mater. 2019, 31, 1803639.

    Article  Google Scholar 

  7. Zhang, Y. B.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820–823.

    Article  CAS  PubMed  Google Scholar 

  8. Choi, S. M.; Jhi, S. H.; Son, Y. W. Controlling energy gap of bilayer graphene by strain. Nano Lett. 2010, 10, 3486–3489.

    Article  CAS  PubMed  Google Scholar 

  9. Verberck, B.; Partoens, B.; Peeters, F. M.; Trauzettel, B. Strain-induced band gaps in bilayer graphene. Phys. Rev. B 2012, 85, 125403.

    Article  Google Scholar 

  10. Zhang, W. J.; Lin, C. T.; Liu, K. K.; Tite, T.; Su, C. Y.; Chang, C. H.; Lee, Y. H.; Chu, C. W.; Wei, K. H.; Kuo, J. L. et al. Opening an electrical band gap of bilayer graphene with molecular doping. ACS Nano, 2011, 5, 7517–7524.

    Article  CAS  PubMed  Google Scholar 

  11. Mak, K. F.; Lui, C. H.; Shan, J.; Heinz, T. F. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 2009, 102, 256405.

    Article  PubMed  Google Scholar 

  12. Ju, L.; Shi, Z. W.; Nair, N.; Lv, Y. C.; Jin, C. H.; Velasco, J.; Ojeda-Aristizabal, C.; Bechtel, H. A.; Martin, M. C.; Zettl, A. et al. Topological valley transport at bilayer graphene domain walls. Nature 2015, 520, 650–655.

    Article  CAS  PubMed  Google Scholar 

  13. Ju, L.; Wang, L.; Cao, T.; Taniguchi, T.; Watanabe, K.; Louie, S. G.; Rana, F.; Park, J.; Hone, J.; Wang, F. et al. Tunable excitons in bilayer graphene. Science 2017, 358, 907–910.

    Article  CAS  PubMed  Google Scholar 

  14. Yin, J. B.; Tan, C.; Barcons-Ruiz, D.; Torre, I.; Watanabe, K.; Taniguchi, T.; Song, J. C. W.; Hone, J.; Koppens, F. H. L. Tunable and giant valley-selective Hall effect in gapped bilayer graphene. Science 2022, 375, 1398–1402.

    Article  CAS  PubMed  Google Scholar 

  15. Li, J. I. A.; Tan, C.; Chen, S.; Zeng, Y.; Taniguchi, T.; Watanabe, K.; Hone, J.; Dean, C. R. Even-denominator fractional quantum Hall states in bilayer graphene. Science 2017, 358, 648–652.

    Article  CAS  PubMed  Google Scholar 

  16. Szafranek, B. N.; Schall, D.; Otto, M.; Neumaier, D.; Kurz, H. High on/off ratios in bilayer graphene field effect transistors realized by surface dopants. Nano Lett. 2011, 11, 2640–2643.

    Article  CAS  PubMed  Google Scholar 

  17. Jung, M.; Rickhaus, P.; Zihlmann, S.; Makk, P.; Schönenberger, C. Microwave photodetection in an ultraclean suspended bilayer graphene p-n junction. Nano Lett. 2016, 16, 6988–6993.

    Article  CAS  PubMed  Google Scholar 

  18. Wu, S. F.; Mao, L.; Jones, A. M.; Yao, W.; Zhang, C. W.; Xu, X. D. Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene. Nano Lett. 2012, 12, 2032–2036.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, X. L.; Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 2019, 4, 669–684.

    Article  Google Scholar 

  20. Huang, M.; Bakharev, P. V.; Wang, Z. J.; Biswal, M.; Yang, Z.; Jin, S.; Wang, B.; Park, H. J.; Li, Y. Q.; Qu, D. S. et al. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(III) foil. Nat. Nanotechnol. 2020, 15, 289–295.

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen, V. L.; Duong, D. L.; Lee, S. H.; Avila, J.; Han, G.; Kim, Y. M.; Asensio, M. C.; Jeong, S. Y.; Lee, Y. H. Layer-controlled single-crystalline graphene film with stacking order via Cu-Si alloy formation. Nat. Nanotechnol. 2020, 15, 861–867.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, W.; Kraemer, S.; Sarkar, D.; Li, H.; Ajayan, P. M.; Banerjee, K. Controllable and rapid synthesis of high-quality and large-area bernal stacked bilayer graphene using chemical vapor deposition. Chem. Mater. 2014, 26, 907–915.

    Article  Google Scholar 

  23. Gao, Z. L.; Zhang, Q. C.; Naylor, C. H.; Kim, Y.; Abidi, I. H.; Ping, J. L.; Ducos, P.; Zauberman, J.; Zhao, M. Q.; Rappe, A. M. et al. Crystalline bilayer graphene with preferential stacking from Ni-Cu gradient alloy. ACS Nano 2018, 12, 2275–2282.

    Article  CAS  PubMed  Google Scholar 

  24. Qian, Y. T.; Kang, D. J. Large-area high-quality AB-stacked bilayer graphene on h-BN/Pt foil by chemical vapor deposition. ACS Appl. Mater. Interfaces 2018, 10, 29069–29075.

    Article  CAS  PubMed  Google Scholar 

  25. Deng, B.; Liu, Z. F.; Peng, H. L. Toward mass production of CVD graphene films. Adv. Mater. 2019, 31, 1800996.

    Article  Google Scholar 

  26. Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Neto, A. H. C.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.

    Article  CAS  PubMed  Google Scholar 

  27. Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.

    Article  PubMed  Google Scholar 

  28. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, J. C.; Liu, X. T.; Zhang, M. Q.; Zhang, R.; Ta, H. Q.; Sun, J. B.; Wang, W. D.; Zhu, W. Q.; Fang, T. T.; Jia, K. C. et al. Fast synthesis of large-area bilayer graphene film on Cu. Nat. Commun. 2023, 14, 3199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan, K.; Peng, H. L.; Zhou, Y.; Li, H.; Liu, Z. F. Formation of bilayer bernal graphene: Layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 2011, 11, 1106–1110.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, L. X.; Zhou, H. L.; Cheng, R.; Yu, W. J.; Liu, Y.; Chen, Y.; Shaw, J.; Zhong, X.; Huang, Y.; Duan, X. F. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 2012, 6, 8241–8249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ta, H. Q.; Perello, D. J.; Duong, D. L.; Han, G. H.; Gorantla, S.; Nguyen, V. L.; Bachmatiuk, A.; Rotkin, S. V.; Lee, Y. H.; Rümmeli, M. H. Stranski-krastanov and volmer-weber CVD growth regimes to control the stacking order in bilayer graphene. Nano Lett. 2016, 16, 6403–6410.

    Article  CAS  PubMed  Google Scholar 

  33. Fang, W. J.; Hsu, A. L.; Song, Y.; Birdwell, A. G.; Amani, M.; Dubey, M.; Dresselhaus, M. S.; Palacios, T.; Kong, J. Asymmetric growth of bilayer graphene on copper enclosures using low-pressure chemical vapor deposition. ACS Nano, 2014, 8, 6491–6499.

    Article  CAS  PubMed  Google Scholar 

  34. Hao, Y. F.; Wang, L.; Liu, Y. Y.; Chen, H.; Wang, X. H.; Tan, C.; Nie, S.; Suk, J. W.; Jiang, T. F.; Liang, T. F. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016, 11, 426–431.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, B.; Liang, D. D.; Sun, Z. T.; Ci, H.; Liu, B. Z.; Gao, Y. Q.; Shan, J. Y.; Yang, X. Q.; Rümmeli, M. H.; Wang, J. X. et al. Toward direct growth of ultra — flat graphene. Adv. Funct. Mater. 2022, 32, 2200428.

    Article  CAS  Google Scholar 

  36. Ge, X. M.; Zhang, Y. H.; Chen, L. X.; Zheng, Y. H.; Chen, Z. Y.; Liang, Y. J.; Hu, S. K.; Li, J.; Sui, Y.; Yu, G. H. et al. Mechanism of SiOx particles formation during CVD graphene growth on Cu substrates. Carbon 2018, 139, 989–998.

    Article  CAS  Google Scholar 

  37. Wang, Z. J.; Weinberg, G.; Zhang, Q.; Lunkenbein, T.; Klein-Hoffmann, A.; Kurnatowska, M.; Plodinec, M.; Li, Q.; Chi, L. F.; Schloegl, R. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 2015, 9, 1506–1519.

    Article  CAS  PubMed  Google Scholar 

  38. Xu, X. Z.; Qiao, R. X.; Liang, Z. H.; Zhang, R.; Zeng, F. K.; Cui, G. L.; Zhang, X. W.; Zou, D. X.; Guo, Y.; Liu, C. et al. Towards intrinsically pure graphene grown on copper. Nano Res. 2022, 15, 919–924.

    Article  CAS  Google Scholar 

  39. Nguyen, V. L.; Shin, B. G.; Duong, D. L.; Kim, S. T.; Perello, D.; Lim, Y. J.; Yuan, Q. H.; Ding, F.; Jeong, H. Y.; Shin, H. S. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 2015, 27, 1376–1382.

    Article  CAS  PubMed  Google Scholar 

  40. Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080.

    Article  CAS  Google Scholar 

  41. Sun, L. Z.; Wang, Z. H.; Wang, Y. C.; Zhao, L.; Li, Y. L. Z.; Chen, B. H.; Huang, S. H.; Zhang, S. S.; Wang, W. D.; Pei, D. et al. Heterosite nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nat. Commun. 2021, 12, 2391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wei, W.; Zhang, C.; Li, H. B.; Pan, J. Q.; Tan, Z.; Li, Y. J.; Cui, Y. In situ growth dynamics of uniform bilayer graphene with different twisted angles following layer-by-layer mode. J. Phys. Chem. Lett. 2022, 13, 11201–11207.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Basic and Applied Basic Research Foundation (Nos. 2020B1515020043 and 2023A1515012743), Guangdong Major Project of Basic and Applied Basic Research (No. 2021B0301030002), the National Natural Science Foundation of China (Nos. 12322406, 52102043, 61905215, 52025023, 51991342 and 52021006), the Key R&D Program of Guangdong Province (No. 2020B010189001), the National Key R&D Program of China (No. 2022YFA1403500), the Pearl River Talent Recruitment Program of Guangdong Province (No. 2019ZT08C321), and the Key Project of Science and Technology of Guangzhou (No. 202201010383). We thank the National Supercomputer Centre in Tianjin for computing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhi Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhou, T., Ren, Y. et al. Towards growth of pure AB-stacked bilayer graphene single crystals. Nano Res. 17, 4616–4621 (2024). https://doi.org/10.1007/s12274-023-6348-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6348-9

Keywords

Navigation