Skip to main content
Log in

Defect spinel oxides for electrocatalytic reduction reactions

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalytic reduction reactions play a crucial role in electrochemical energy conversion and storage technology, which are emerging technologies to ameliorate environmental problems. Spinel oxides are widely explored in electrocatalytic oxidation reactions but have a poor intrinsic ability to reduction reactions, making their electrocatalytic ability less effective. To improve this, defect engineering is a valuable method for regulating the electronic structure and coordination environment. Herein, this manuscript discusses the use of defect spinel oxides in electrocatalytic reduction reactions, including the different types of defects, construction methods, and characterization techniques. It also outlines the various applications of defect spinel oxides in different electrocatalytic reduction reactions. Finally, it goes over the challenges and future outlooks for defect spinels. This review aims to thoroughly explain how defect spinels work in electrocatalytic reduction reactions and serve as a helpful guide for creating effective electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He, H. Z.; Zhang, Y.; Li, Y. Y.; Wang, P. Recent innovations of silk-derived electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and oxygen reduction reaction. Int. J. Hydrogen Energy 2021, 46, 7848–7865.

    Article  CAS  Google Scholar 

  2. Zhao, Z. Q.; Chen, H.; Zhang, W. Y.; Yi, S.; Chen, H. L.; Su, Z.; Niu, B.; Zhang, Y. Y.; Long, D. H. Defect engineering in carbon materials for electrochemical energy storage and catalytic conversion. Mater. Adv. 2023, 4, 835–867.

    Article  CAS  Google Scholar 

  3. Zhang, L. L.; Xiao, J.; Wang, H. Y.; Shao, M. H. Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catal. 2017, 7, 7855–7865.

    Article  CAS  Google Scholar 

  4. Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

    Article  CAS  PubMed  Google Scholar 

  5. Ha, Y.; L. Shi, L. X.; Chen, Z. L.; Wu, R. B. Phase-transited lysozyme-driven formation of self-supported Co3O4@C nanomeshes for overall water splitting. Adv. Sci. 2019, 6, 1900272.

    Article  Google Scholar 

  6. Wang, T. T.; Wang, P. Y.; Zang, W. J.; Li, X.; Chen, D.; Kou, Z. K.; Mu, S. C.; Wang, J. Nanoframes of Co3O4–Mo2N heterointerfaces enable high-performance bifunctionality toward both electrocatalytic HER and OER. Adv. Funct. Mater. 2022, 32, 2107382.

    Article  CAS  Google Scholar 

  7. Liu, B.; Cheng, J. Y.; Peng, H. Q.; Chen, D.; Cui, X.; Shen, D.; Zhang, K.; Jiao, T. P.; Li, M. F.; Lee, C. S. et al. In situ nitridated porous nanosheet networked Co3O4–Co4N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolution. J. Mater. Chem. A 2019, 7, 775–782.

    Article  CAS  Google Scholar 

  8. Zhao, Q.; Yan, Z. H.; Chen, C. C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 777, 10121–10211.

    Article  Google Scholar 

  9. Li, Z.; Zhang, Y.; Feng, Y.; Cheng, C. Q.; Qiu, K. W.; Dong, C. K.; Liu, H.; Du, X. W. Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions. Adv. Funct. Mater. 2019, 29, 1903444.

    Article  Google Scholar 

  10. Wang, B.; Lu, X. Y.; Wong, K. Y.; Tang, Y. Y. Facile solvothermal synthesis and superior lithium storage capability of Co3O4 nanoflowers with multi-scale dimensions. Mater. Chem. Front. 2017, 7, 468–476.

    Article  Google Scholar 

  11. Wu, H. T.; Sun, W.; Shen, J. R.; Rooney, D. W.; Wang, Z. H.; Sun, K. N. Role of flower-like ultrathin Co3O4 nanosheets in water splitting and non-aqueous Li-O2 batteries. Nanoscale 2018, 10, 10221–10231.

    Article  CAS  PubMed  Google Scholar 

  12. Qiu, Y. H.; Wang, Y. P. Controllable synthesis of porous Co3O4 nanorods and their ethanol-sensing performance. Ceram. Int. 2022, 48, 29659–29668.

    Article  CAS  Google Scholar 

  13. Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.

    Article  CAS  Google Scholar 

  14. Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv. 2012, 2, 1835–1841.

    Article  CAS  Google Scholar 

  15. Li, S. D.; Fan, J. C.; Li, S. Y.; Ma, Y.; Wu, J. H.; Jin, H. G.; Chao, Z. S.; Pan, D.; Guo, Z. H. In situ-grown Co3O4 nanorods on carbon cloth for efficient electrocatalytic oxidation of urea. J. Nanostruct. Chem 2021, 77, 735–749.

    Article  Google Scholar 

  16. Lyu, L.; Zheng, S. N.; Wang, F. L.; Liu, Y.; Liu, J. R. High-performance microwave absorption of MOF - derived Co3O4@N-doped carbon anchored on carbon foam. J. Colloid Interface Sci. 2021, 602, 197–206.

    Article  CAS  PubMed  Google Scholar 

  17. Tan, P.; Chen, B.; Xu, H. R.; Cai, W. Z.; He, W.; Ni, M. In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries. Appl. Catal. B: Environ. 2019, 247, 104–112.

    Article  Google Scholar 

  18. Bian, W. Y.; Yang, Z. R.; Strasser, P.; Yang, R. Z. A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution. J. Power Sources 2014, 250, 196–203.

    Article  CAS  Google Scholar 

  19. Geng, J.; Kuai, L.; Kan, E. J.; Wang, Q.; Geng, B. Y. Precious-metal-free Co-Fe-O/rGO synergetic electrocatalysts for oxygen evolution reaction by a facile hydrothermal route. ChemSusChem 2015, 8, 659–664.

    Article  CAS  PubMed  Google Scholar 

  20. Cai, S. X.; Zhang, D. S.; Shi, L. Y.; Xu, J.; Zhang, L.; Huang, L.; Li, H. R.; Zhang, J. P. Porous Ni-Mn oxide nanosheets in situ formed on nickel foam as 3D hierarchical monolith de-NOx catalysts. Nanoscale 2014, 6, 7346–7353.

    Article  CAS  PubMed  Google Scholar 

  21. Khilari, S.; Pandit, S.; Varanasi, J. L.; Das, D.; Pradhan, D. Bifunctional manganese ferrite/polyaniline hybrid as electrode material for enhanced energy recovery in microbial fuel cell. ACS Appl. Mater. Interfaces 2015, 7, 20657–20666.

    Article  CAS  PubMed  Google Scholar 

  22. Sun, J. Q.; Yang, D. J.; Lowe, S.; Zhang, L. J.; Wang, Y. Z.; Zhao, S. L.; Liu, P. R.; Wang, Y.; Tang, Z. Y.; Zhao, H. J. et al. Sandwichlike reduced graphene oxide/carbon black/amorphous cobalt borate nanocomposites as bifunctional cathode electrocatalyst in rechargeable zinc-air batteries. Adv. Energy Mater. 2018, 8, 1801495.

    Article  Google Scholar 

  23. Bae, J.; Shin, D.; Jeong, H.; Choe, C.; Choi, Y.; Han, J. W.; Lee, H. Facet-dependent Mn doping on shaped Co3O4 crystals for catalytic oxidation. ACS Catal. 2021, 11, 11066–11074.

    Article  CAS  Google Scholar 

  24. Yan, C. S.; Chen, G.; Zhou, X.; Sun, J. X.; Lv, C. D. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 1428–1436.

    Article  CAS  Google Scholar 

  25. He, Y.; Zhou, W. Q.; Li, D. Q.; Liang, Y. M.; Chao, S. X.; Zhao, X. Q.; Zhang, M. M.; Xu, J. K. Rare earth doping engineering tailoring advanced oxygen-vacancy Co3O4 with tunable structures for high-efficiency energy storage. Small 2023, 19, 2206956.

    Article  CAS  Google Scholar 

  26. Wang, Y. Q.; Tao, L.; Xiao, Z. H.; Chen, R.; Jiang, Z. Q.; Wang, S. Y. 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv. Funct. Mater. 2018, 28, 1705356.

    Article  Google Scholar 

  27. Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

    Article  Google Scholar 

  28. Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.

    Article  CAS  PubMed  Google Scholar 

  29. Tomon, C.; Krittayavathananon, A.; Sarawutanukul, S.; Duangdangchote, S.; Phattharasupakun, N.; Homlamai, K.; Sawangphruk, M. Enhancing bifunctional electrocatalysts of hollow Co3O4 nanorods with oxygen vacancies towards ORR and OER for Li-O2 batteries. Electrochim. Acta 2021, 367, 137490.

    Article  CAS  Google Scholar 

  30. Hsu, S. H.; Hung, S. F.; Wang, H. Y.; Xiao, F. X.; Zhang, L. P.; Yang, H. B.; Chen, H. M.; Lee, J. M.; Liu, B. Tuning the electronic spin state of catalysts by strain control for highly efficient water electrolysis. Small Methods 2018, 2, 1800001.

    Article  Google Scholar 

  31. Zhong, W. D.; Yang, C. F.; Wu, J.; Xu, W. L.; Zhao, R.; Xiang, H.; Shen, K.; Zhang, Q.; Li, X. K. Oxygen vacancies induced by charge compensation tailoring Ni-doped Co3O4 nanoflakes for efficient hydrogen evolution. Chem. Eng. J. 2022, 436, 134813.

    Article  CAS  Google Scholar 

  32. Tao, H. B.; Fang, L. W.; Chen, J. Z.; Yang, H. B.; Gao, J. J.; Miao, J. W.; Chen, S. L.; Liu, B. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J. Am. Chem. Soc. 2016, 138, 9978–9985.

    Article  CAS  PubMed  Google Scholar 

  33. Ding, D. N.; Shen, K.; Chen, X. D.; Chen, H. R.; Chen, J. Y.; Fan, T.; Wu, R. F.; Li, Y. W. Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR. ACS Catal. 2018, 8, 7879–7888.

    Article  CAS  Google Scholar 

  34. Xiang, H. X.; Tan, A. D.; Piao, J. H.; Fu, Z. Y.; Liang, Z. X. Efficient nitrogen-doped carbon for zinc-bromine flow battery. Small 2019, 15, 1901848.

    Article  Google Scholar 

  35. Yang, J.; Guo, D. H.; Zhao, S. L.; Lin, Y.; Yang, R.; Xu, D. D.; Shi, N. E.; Zhang, X. S.; Lu, L. Z.; Lan, Y. Q. et al. Cobalt phosphides nanocrystals encapsulated by P-doped carbon and Married with P-doped graphene for overall water splitting. Small 2019, 15, 1804546.

    Article  Google Scholar 

  36. Xia, L.; Wu, X. F.; Wang, Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. S-doped carbon nanospheres: An efficient electrocatalyst toward artificial N2 fixation to NH3. Small Methods 2019, 3, 1800251

    Article  Google Scholar 

  37. Zhao, H. Y.; Sun, C. H.; Jin, Z.; Wang, D. W.; Yan, X. C.; Chen, Z. G.; Zhu, G. S.; Yao, X. D. Carbon for the oxygen reduction reaction: A defect mechanism. J. Mater. Chem. A 2015, 3, 11736–11739.

    Article  CAS  Google Scholar 

  38. Jia, Y.; Zhang, L. Z.; Zhuang, L. Z.; Liu, H. L.; Yan, X. C.; Wang, X.; Liu, J. D.; Wang, J. C.; Zheng, Y. R.; Xiao, Z. H. et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2019, 2, 688–695.

    Article  CAS  Google Scholar 

  39. Zhang, L. Z.; Jia, Y.; Gao, G. P.; Yan, X. C.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D. J.; Du, A. J. et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 2018, 4, 285–297.

    Article  CAS  Google Scholar 

  40. Wang, Q. C.; Xue, X. X.; Lei, Y. P.; Wang, Y. C.; Feng, Y. X.; Xiong, X.; Wang, D. S.; Li, Y. D. Engineering of electronic states on Co3O4 ultrathin nanosheets by cation substitution and anion vacancies for oxygen evolution reaction. Small 2020, 16, 2001571.

    Article  CAS  Google Scholar 

  41. Dai, W. L.; Zou, M. L.; Zhao, C.; Zhang, J.; Wang, L. G.; Wang, X. S.; Yang, L. X.; Zhou, L.; Zou, J. P.; Luo, X. B. et al. Monoatomic oxygen fueled by oxygen vacancies governs the photothermocatalytic deep oxidation of toluene on Na-doped Co3O4. Appl. Catal. B: Environ. 2022, 317, 121769.

    Article  CAS  Google Scholar 

  42. Huang, Y. J.; Li, M.; Pan, F.; Zhu, Z. Y.; Sun, H. M.; Tang, Y. W.; Fu, G. T. Plasma - induced Mo - doped Co3O4 with enriched oxygen vacancies for electrocatalytic oxygen evolution in water splitting. Carbon Energy 2023, 5, e279.

    Article  CAS  Google Scholar 

  43. Thangasamy, P.; Selvakumar, K.; Sathish, M.; Kumar, S. M. S.; Thangamuthu, R. Anchoring of ultrafine Co3O4 nanoparticles on MWCNTs using supercritical fluid processing and its performance evaluation towards electrocatalytic oxygen reduction reaction. Catal. Sci. Technol. 2017, 7, 1227–1234.

    Article  CAS  Google Scholar 

  44. Muthurasu, A.; Sheen Mers, S. V.; Ganesh, V. Nitrogen doped graphene quantum dots (N-GQDs)/Co3O4 composite material as an efficient bi-functional electrocatalyst for oxygen evolution and oxygen reduction reactions. Int. J. Hydrogen Energy 2018, 43, 4726–4737.

    Article  CAS  Google Scholar 

  45. Liu, J.; Xie, J. H.; Wang, R. Y.; Liu, B.; Meng, X.; Xu, X. Q.; Tang, B.; Cai, Z.; Zou, J. L. Interfacial electron modulation of Cu2O by Co3O4 embedded in hollow carbon cube skeleton for boosting oxygen reduction/revolution reactions. Chem. Eng. J. 2022, 450, 137961.

    Article  CAS  Google Scholar 

  46. Dai, L. J.; Liu, M.; Song, Y.; Liu, J. J.; Wang, F. Mn3O4-decorated Co3O4 nanoparticles supported on graphene oxide: Dual electrocatalyst system for oxygen reduction reaction in alkaline medium. Nano Energy 2016, 27, 185–195.

    Article  CAS  Google Scholar 

  47. Shi, Y. X.; Pan, X. F.; Li, B.; Zhao, M. M.; Pang, H. Co3O4 and its composites for high-performance Li-ion batteries. Chem. Eng. J. 2018, 343, 427–446.

    Article  CAS  Google Scholar 

  48. Wei, C.; Feng, Z. X.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 2017, 29, 1606800.

    Article  Google Scholar 

  49. Zhou, Y.; Sun, S. N.; Wei, C.; Sun, Y. M.; Xi, P. X.; Feng, Z. X.; Xu, Z. J. Significance of engineering the octahedral units to promote the oxygen evolution reaction of spinel oxides. Adv. Mater. 2019, 31, 1902509.

    Article  CAS  Google Scholar 

  50. Zhou, Y.; Du, Y. H.; Xi, S. B.; Xu, Z. J. Spinel manganese ferrites for oxygen electrocatalysis: Effect of Mn valency and occupation site. Electrocatalysis 2018, 9, 287–292.

    Article  CAS  Google Scholar 

  51. Liu, F.; Fan, Z. X. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem. Soc. Rev 2023, 52, 1723–1772.

    Article  CAS  PubMed  Google Scholar 

  52. Liu, D.; Dai, L. M.; Lin, X. N.; Chen, J. F.; Zhang, J.; Feng, X. L.; Müllen, K.; Zhu, X.; Dai, S. Chemical approaches to carbon-based metal-free catalysts. Adv. Mater. 2019, 31, 1804863.

    Article  Google Scholar 

  53. Wang, X. Q.; Liu, C. G.; Neff, D.; Fulvio, P. F.; Mayes, R. T.; Zhamu, A.; Fang, Q.; Chen, G. R.; Meyer, H. M.; Jang, B. Z. et al. Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. J. Mater. Chem. A 2013, 1, 7920–7926.

    Article  CAS  Google Scholar 

  54. Kim, N. D.; Kim, W.; Joo, J. B.; Oh, S.; Kim, P.; Kim, Y.; Yi, J. Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation. J. Power Sources 2008, 180, 671–675.

    Article  CAS  Google Scholar 

  55. Chang, C. K.; Kataria, S.; Kuo, C. C.; Ganguly, A.; Wang, B. Y.; Hwang, J. Y.; Huang, K. J.; Yang, W. H.; Wang, S. B.; Chuang, C. H. et al. Band gap engineering of chemical vapor deposited graphene by in situ BN doping. ACS Nano 2013, 7, 1333–1341.

    Article  CAS  PubMed  Google Scholar 

  56. Szmigiel, D.; Raróg-Pilecka, W.; Miśkiewicz, E.; Kaszkur, Z.; Kowalczyk, Z. Ammonia decomposition over the ruthenium catalysts deposited on magnesium-aluminum spinel. Appl. Catal. A: Gen. 2004, 264, 59–63.

    Article  CAS  Google Scholar 

  57. Saravanakkumar, D.; Tulasi, S. K.; Srivastava, B. K.; Kumar, N. M.; Devi, N. G.; Sakhare, D. T. Influence of physical characteristics of graphene/Al2O3 composites employing nano particles based organic phase changing materials. Mater. Today: Proc. 2023, 77, 448–454.

    CAS  Google Scholar 

  58. Nivoix, V.; Gillot, B. Preparation, characterization and reactivity toward oxygen of new nanosized vanadium-iron spinels. Solid State Ionics 1998, 111, 17–25.

    Article  CAS  Google Scholar 

  59. Baikalov, N.; Rakhimbek, I.; Konarov, A.; Mentbayeva, A.; Zhang, Y. G.; Bakenov, Z. Catalytic effects of Ni nanoparticles encapsulated in few-layer N-doped graphene and supported by N-doped graphitic carbon in Li-S batteries. RSC Adv. 2023, 13, 9428–9440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, W.; Wang, M. Nitrogen modulated NiMoO4 with enhanced activity for the electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Catal. Sci. Technol. 2021, 11, 7326–7330.

    Article  CAS  Google Scholar 

  61. Ma, W. M.; Zhang, X. J.; Meng, Y. J.; Zhao, J. G. Engineering design of N-doped Co3O4 nanofibers as sulfur host for highly stable cathode materials. Ionics 2022, 28, 629–633.

    Article  CAS  Google Scholar 

  62. Guo, Z. Y.; Li, C. X.; Gao, M.; Han, X.; Zhang, Y. J.; Zhang, W. J.; Li, W. W. Mn–O covalency governs the intrinsic activity of Co-Mn spinel oxides for boosted peroxymonosulfate activation. Angew. Chem., Int. Ed. 2021, 60, 274–280.

    Article  CAS  Google Scholar 

  63. Lv, X. W.; Liu, Y. P.; Tian, W. W.; Gao, L. J.; Yuan, Z. Y. Aluminum and phosphorus codoped “superaerophobic” Co304 microspheres for highly efficient electrochemical water splitting and Zn-air batteries. J. Energy Chem. 2020, 50, 324–331.

    Article  Google Scholar 

  64. Tang, B. S.; Yang, J.; Kou, Z. K.; Xu, L.; Seng, H. L.; Xie, Y. N.; Handoko, A. D.; Liu, X. X.; Seh, Z. W.; Kawai, H. et al. Surface-engineered cobalt oxide nanowires as multifunctional electrocatalysts for efficient Zn-Air batteries-driven overall water splitting. Energy Storage Mater. 2019, 23, 1–7.

    Article  CAS  Google Scholar 

  65. Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236–2241.

    Article  CAS  Google Scholar 

  66. Li, R. C.; Guo, Y. G.; Chen, H. X.; Wang, K.; Tan, R. T.; Long, B.; Tong, Y. X.; Tsiakaras, P.; Song, S. Q.; Wang, Y. Anion-cation double doped Co3O4 microtube architecture to promote high-valence Co species formation for enhanced oxygen evolution reaction. ACS Sustain. Chem. Eng. 2019, 7, 11901–11910.

    Article  CAS  Google Scholar 

  67. Jin, D.; Woo, H.; Prabhakaran, S.; Lee, Y.; Kim, M. H.; Kim, D. H.; Lee, C. Single phase trimetallic spinel CoCrxRh2−xO4 nanofibers for highly efficient oxygen evolution reaction under freshwater mimicking seawater conditions. Adv. Funct. Mater. 2023, 33, 2301559.

    Article  CAS  Google Scholar 

  68. Duraisamy, V.; Sudha, V.; Dharuman, V.; Senthil Kumar, S. M. Highly efficient electrochemical sensing of acetaminophen by cobalt oxide-embedded nitrogen-doped hollow carbon spheres. ACS Biomater. Sci. Eng. 2023, 9, 1682–1693.

    Article  CAS  PubMed  Google Scholar 

  69. Bian, J. J.; Cheng, X. P.; Meng, X. Y.; Wang, J.; Zhou, J. G.; Li, S. Q.; Zhang, Y. F.; Sun, C. W. Nitrogen-doped NiCo2O4 microsphere as an efficient catalyst for flexible rechargeable zinc-air batteries and self-charging power system. ACS Appl. Energy Mater. 2019, 2, 2296–2304.

    Article  CAS  Google Scholar 

  70. Mers, S. V. S.; Maruthapandian, V.; Ganesh, V. Highly efficient bifunctional electrocatalyst using structurally architectured N-doped cobalt oxide. ChemistrySelect 2018, 3, 8752–8762.

    Article  CAS  Google Scholar 

  71. Mei, Z. J.; Shen, Z. M.; Wang, W. H.; Zhang, Y. J. Novel sorbents of non-metal-doped spinel Co3O4 for the removal of gas-phase elemental mercury. Environ. Sci. Technol. 2008, 42, 590–595.

    Article  CAS  PubMed  Google Scholar 

  72. Li, Y. J.; Li, W. W.; Yang, C.; Tao, K.; Ma, Q. X.; Han, L. Engineering coordination polymer-derived one-dimensional porous S-doped Co3O4 nanorods with rich oxygen vacancies as highperformance electrode materials for hybrid supercapacitors. Dalton Trans. 2020, 49, 10421–10430.

    Article  CAS  PubMed  Google Scholar 

  73. Gao, H.; Chen, S. G.; Wei, S.; Li, W.; Zhang, M. T.; Sun, N. Facile synthesis of ultralight S-doped Co3O4 microflowers@reduced graphene oxide aerogels with defect and interface engineering for broadband electromagnetic wave absorption. J. Mater. Chem. C 2022, 10, 12630–12643.

    Article  CAS  Google Scholar 

  74. Jiang, T. T.; Yin, N. Q.; Bai, Z. M.; Dai, P.; Yu, X. X.; Wu, M. Z.; Li, G. Wet chemical synthesis of S doped Co3O4 nanosheets/reduced graphene oxide and their application in dye sensitized solar cells. Appl. Surf. Sci. 2018, 450, 219–227.

    Article  CAS  Google Scholar 

  75. Li, Y. H.; Li, L. X.; Du, F. Y. Amorphous S-doped NLxCo3−xO4 for high-performance asymmetric supercapacitors. Electrochim. Acta. 2022, 434, 141326.

    Article  CAS  Google Scholar 

  76. Zhang, Z. M.; Sun, H. N.; Li, J. F.; Shi, Z. H.; Fan, M. H.; Bian, H. Q.; Wang, T.; Gao, D. Q. S- doped CoMn2O4 with more high valence metallic cations and oxygen defects for zinc-air batteries. J. Power Sources 2021, 491, 229584.

    Article  CAS  Google Scholar 

  77. Lu, M. X.; Kang, G. Y.; Deng, Y. J. Construction of mesoporous S-doped Co3O4 with abundant oxygen vacancies as an efficient activator of PMS for organic dye degradation. CrystEngComm 2023, 25, 2767–2777.

    Article  CAS  Google Scholar 

  78. Zhang, J. Q.; Shang, X.; Ren, H.; Chi, J. Q.; Fu, H.; Dong, B.; Liu, C. G.; Chai, Y. M. Modulation of inverse spinel Fe3O4 by phosphorus doping as an industrially promising electrocatalyst for hydrogen evolution. Adv. Mater. 2019, 31, 1905107.

    Article  CAS  Google Scholar 

  79. Lu, W.; Shen, J. L.; Zhang, P.; Zhong, Y. J.; Hu, Y.; Lou, X. W. Construction of CoO/Co-Cu-S hierarchical tubular heterostructures for hybrid supercapacitors. Angew. Chem., Int. Ed. 2019, 58, 15441–15447.

    Article  CAS  Google Scholar 

  80. Zhang, S. L.; Guan, B. Y.; Lu, X. F.; Xi, S. B.; Du, Y. H.; Lou, X. W. Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv. Mater. 2020, 32, 2002235.

    Article  CAS  Google Scholar 

  81. Meng, S. C.; Sun, S. C.; Liu, Y.; Lu, Y. K.; Chen, M. Synergistic modulation of inverse spinel Fe3O4 by doping with chromium and nitrogen for efficient electrocatalytic water splitting. J. Colloid Interface Sci. 2022, 624, 433–442.

    Article  CAS  PubMed  Google Scholar 

  82. Bera, S.; Saha, A.; Mondal, S.; Biswas, A.; Mallick, S.; Chatterjee, R.; Roy, S. Review of defect engineering in perovskites for photovoltaic application. Mater. Adv. 2022, 3, 5234–5247.

    Article  CAS  Google Scholar 

  83. Cai, Z.; Bi, Y. M.; Hu, E. Y.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X. L.; Kuang, Y.; Li, Y. P.; Yang, X. Q. et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 2018, 8, 1701694.

    Article  Google Scholar 

  84. Li, H. Y.; Sun, S. N.; Xi, S. B.; Chen, Y. B.; Wang, T.; Du, Y. H.; Sherburne, M.; Ager, J. W.; Fisher, A. C.; Xu, Z. C. J. Metal-oxygen hybridization determined activity in spinel-based oxygen evolution catalysts: A case study of ZnFe2−xCrxO4. Chem. Mater. 2018, 30, 6839–6848.

    Article  CAS  Google Scholar 

  85. Lu, Y.; Li, C. J.; Zhang, Y.; Cao, X.; Xie, G.; Wang, M. L.; Peng, D. D.; Huang, K.; Zhang, B. W.; Wang, T. et al. Engineering of cation and anion vacancies in Co3O4 thin nanosheets by laser irradiation for more advancement of oxygen evolution reaction. Nano Energy 2021, 83, 105800.

    Article  CAS  Google Scholar 

  86. Lu, Y. X.; Zhou, L.; Wang, S. Y.; Zou, Y. Q. Defect engineering of electrocatalysts for organic synthesis. Nano Res. 2023, 16, 1890–1912.

    Article  CAS  Google Scholar 

  87. Li, Y.; Li, F. M.; Meng, X. Y.; Li, S. N.; Zeng, J. H.; Chen, Y. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 2018, 8, 1913–1920.

    Article  CAS  Google Scholar 

  88. Gao, R.; Shang, Z. R.; Zheng, L. R.; Wang, J. K.; Sun, L. M.; Hu, Z. B.; Liu, X. F. Enhancing the catalytic activity of Co3O4 nanosheets for Li-O2 batteries by the incoporation of oxygen vacancy with hydrazine hydrate reduction. Inorg. Chem. 2019, 58, 4989–4996.

    Article  CAS  PubMed  Google Scholar 

  89. Zhuang, L. Z.; Jia, Y.; He, T. W.; Du, A. J.; Yan, X. C.; Ge, L.; Zhu, Z. H.; Yao, X. D. Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Res. 2018, 11, 3509–3518.

    Article  CAS  Google Scholar 

  90. Xiang, K.; Wu, D.; Fan, Y.; You, W.; Zhang, D. D.; Luo, J. L.; Fu, X. Z. Enhancing bifunctional electrodes of oxygen vacancy abundant ZnCo2O4 nanosheets for supercapacitor and oxygen evolution. Chem. Eng. J. 2021, 425, 130583.

    Article  CAS  Google Scholar 

  91. Zhou, P.; Wang, Y. Y.; Xie, C.; Chen, C.; Liu, H. W.; Chen, R.; Huo, J.; Wang, S. Y. Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction. Chem. Commun. 2017, 53, 11778–11781.

    Article  CAS  Google Scholar 

  92. Peng, Y.; Wu, H.; Yuan, M. J.; Li, F. F.; Zou, X. L.; Ng, Y. H.; Hsu, H. Y. Chemical reduction-induced surface oxygen vacancies of BiVO4 photoanodes with enhanced photoelectrochemical performance. Sustain. Energy Fuels 2021, 5, 2284–2293.

    Article  CAS  Google Scholar 

  93. Peng, S. J.; Gong, F.; Li, L. L.; Yu, D. S.; Ji, D. X.; Zhang, T. R.; Hu, Z.; Zhang, Z. Q.; Chou, S. L.; Du, Y. H. et al. Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J. Am. Chem. Soc. 2018, 140, 13644–13653.

    Article  CAS  PubMed  Google Scholar 

  94. Lim, D.; Kong, H.; Kim, N.; Lim, C.; Ahn, W. S.; Baeck, S. H. Oxygen-deficient NiFe2O4 spinel nanoparticles as an enhanced electrocatalyst for the oxygen evolution reaction. ChemNanoMat 2019, 5, 1296–1302.

    Article  CAS  Google Scholar 

  95. Liu, D. L.; Zhang, C.; Yu, Y. F.; Shi, Y. M.; Yu, Y.; Niu, Z. Q.; Zhang, B. Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Res. 2018, 11, 603–613.

    Article  CAS  Google Scholar 

  96. Gao, S.; Sun, Z. T.; Liu, W.; Jiao, X. C.; Zu, X. L.; Hu, Q. T.; Sun, Y. F.; Yao, T.; Zhang, W. H.; Wei, S. Q. et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat. Commun. 2017, 8, 14503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, K.; Zhang, R. R.; Gao, R. J.; Shen, G. Q.; Pan, L.; Yao, Y. D.; Yu, K. H.; Zhang, X. W.; Zou, J. J. Metal- defected spinel MnxCo3−xO4 with octahedral Mn-enriched surface for highly efficient oxygen reduction reaction. Appl. Catal. B: Environ. 2019, 244, 536–545.

    Article  CAS  Google Scholar 

  98. Zhang, Y. C.; Ullah, S.; Zhang, R. R.; Pan, L.; Zhang, X. W.; Zou, J. J. Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction. Appl. Catal. B: Environ. 2020, 277, 119247.

    Article  CAS  Google Scholar 

  99. Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Zheng, L. R.; Cao, X. Z.; Teng, F.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Adv. Mater. 2017, 29, 1703828.

    Article  Google Scholar 

  100. Tang, T. M.; Wang, Z. L.; Guan, J. Q. A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. Chin. J. Catal. 2022, 43, 636–678.

    Article  CAS  Google Scholar 

  101. Guo, J. Y.; Wang, G. J.; Cui, S. S.; Xia, B. Y.; Liu, Z. J.; Zang, S. Q. Vacancy and strain engineering of Co3O4 for efficient water oxidation. J. Colloid Interface Sci. 2023, 629, 346–354.

    Article  CAS  PubMed  Google Scholar 

  102. Curran, J. E. Physical and chemical etching in plasmas. Thin Solid Films 1981, 86, 101–116.

    Article  CAS  Google Scholar 

  103. Tripathi, M.; Markevich, A.; Böttger, R.; Facsko, S.; Besley, E.; Kotakoski, J.; Susi, T. Implanting germanium into graphene. ACS Nano 2018, 12, 4641–4647.

    Article  CAS  PubMed  Google Scholar 

  104. Yoon, K.; Rahnamoun, A.; Swett, J. L.; Iberi, V.; Cullen, D. A.; Vlassiouk, I. V.; Belianinov, A.; Jesse, S.; Sang, X. H.; Ovchinnikova, O. S. et al. Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation. ACS Nano 2016, 10, 8376–8384.

    Article  CAS  PubMed  Google Scholar 

  105. He, D.; Song, X. Y.; Li, W. Q.; Tang, C. Y.; Liu, J. C.; Ke, Z. J.; Jiang, C. Z.; Xiao, X. H. Active electron density modulation of Co3O4-based catalysts enhances their oxygen evolution performance. Angew. Chem., Int. Ed. 2020, 59, 6929–6935.

    Article  CAS  Google Scholar 

  106. Zeng, H. B.; Du, X. W.; Singh, S. C.; Kulinich, S. A.; Yang, S. K.; He, J. P.; Cai, W. P. Nanomaterials via laser ablation/irradiation in liquid: A review. Adv. Funct. Mater. 2012, 22, 1333–1353.

    Article  Google Scholar 

  107. Tao, L.; Wang, Q.; Dou, S.; Ma, Z. L.; Huo, J.; Wang, S. Y.; Dai, L. M. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 2016, 52, 2764–2767.

    Article  CAS  Google Scholar 

  108. Dou, S.; Dong, C. L.; Hu, Z.; Huang, Y. C.; Chen, J. L.; Tao, L.; Yan, D. F.; Chen, D. W.; Shen, S. H.; Chou, S. L. et al. Atomic-scale CoOx species in metal-organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1702546.

    Article  Google Scholar 

  109. Zhang, Y. Q.; Liu, H. W.; Zhao, S. Y.; Xie, C.; Huang, Z. G.; Wang, S. Y. Insights into the dynamic evolution of defects in electrocatalysts. Adv. Mater. 2023, 35, 2209680.

    Article  CAS  Google Scholar 

  110. Wang, X.; Zhuang, L. Z.; Jia, Y.; Zhang, L. J.; Yang, Q.; Xu, W. J.; Yang, D. J.; Yan, X. C.; Zhang, L. Z.; Zhu, Z. H. et al. One-step in- situ synthesis of vacancy-rich CoFe2O4@defective graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chem. Res. Chin. Univ. 2020, 36, 479–487.

    Article  CAS  Google Scholar 

  111. Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

    Article  CAS  Google Scholar 

  112. Zhang, Y.; Lu, T.; Ye, Y. K.; Dai, W. J.; Zhu, Y. A.; Pan, Y. Stabilizing oxygen vacancy in entropy-engineered CoFe2O4-type catalysts for Co-prosperity of efficiency and stability in an oxygen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 32548–32555.

    Article  CAS  PubMed  Google Scholar 

  113. Liu, S.; Cheng, H.; Xu, K.; Ding, H.; Zhou, J. Y.; Liu, B. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Dual modulation via electrochemical reduction activiation on electrocatalysts for enhanced oxygen evolution reaction. ACS Energy Lett. 2019, 4, 423–429.

    Article  CAS  Google Scholar 

  114. Chen, X.; Yu, M.; Yan, Z. H.; Guo, W. Y.; Fan, G. L.; Ni, Y. X.; Liu, J. D.; Zhang, W.; Xie, W.; Cheng, F. Y. et al. Boosting electrocatalytic oxygen evolution by cation defect modulation via electrochemical etching. CCS Chem. 2021, 3, 675–685.

    Article  CAS  Google Scholar 

  115. Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Liu, Z. Q. Surface Reorganization on electrochemically-induced Zn-Ni-Co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 6492–6499.

    Article  CAS  Google Scholar 

  116. Červenka, J.; Katsnelson, M. I.; Flipse, C. F. J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nat. Phys. 2009, 5, 840–844.

    Article  Google Scholar 

  117. Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir (111). Nano Lett. 2008, 8, 565–570.

    Article  CAS  PubMed  Google Scholar 

  118. Lu, W.; Yan, L.; Ye, W. Q.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Defect engineering of electrode materials towards superior reaction kinetics for high–performance supercapacitors. J. Mater. Chem. A 2022, 10, 15267–15296.

    Article  CAS  Google Scholar 

  119. Yan, C. S.; Chen, G.; Sun, J. X.; Lv, C. D.; Pei, J. Edge dislocation surface modification: A new and efficient strategy for realizing outstanding lithium storage performance. Nano Energy 2011, 15, 558–566.

    Article  Google Scholar 

  120. Li, X. M.; Su, X. Y.; Pei, Y.; Liu, J.; Zheng, X. J.; Tang, K. Y.; Guan, G. Q.; Hao, X. G. Generation of edge dislocation defects in Co3O4 catalysts: An efficient tactic to improve catalytic activity for oxygen evolution. J. Mater. Chem. A 2019, 7, 10745–10750.

    Article  CAS  Google Scholar 

  121. Guan, S. Y.; An, L. L.; Ashraf, S.; Zhang, L. N.; Liu, B. Z.; Fan, Y. P.; Li, B. J. Oxygen vacancy excites Co3O4 nanocrystals embedded into carbon nitride for accelerated hydrogen generation. Appl. Catal. B: Environ. 2020, 269, 118775.

    Article  CAS  Google Scholar 

  122. Wang, L.; Qin, T.; Wang, J. J.; Wang, J. Y.; Zhang, J.; Cong, Y.; Li, X. K.; Li, Y. J. Grain boundary engineering of Co3O4 nanomeshes for efficient electrochemical oxygen evolution. Nanotechnology 2020, 31, 455401.

    Article  CAS  PubMed  Google Scholar 

  123. Xi, Y. M.; Mo, W. H.; Fan, Z. X.; Hu, L. X.; Chen, W. B.; Zhang, Y.; Wang, P.; Zhong, S. X.; Zhao, Y. L.; Bai, S. A mesh-like BiOBr/Bi2S3 nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO2 photoreduction. J. Mater. Chem. A 2022, 10, 20934–20945.

    Article  CAS  Google Scholar 

  124. Ou, G.; Wu, F. C.; Huang, K.; Hussain, N.; Zu, D.; Wei, H. H.; Ge, B. H.; Yao, H. Z.; Liu, L.; Li, H. N. et al. Boosting the electrocatalytic water oxidation performance of CoFe2O4 nanoparticles by surface defect engineering. ACS Appl. Mater. Interfaces 2019, 11, 3978–3983.

    Article  PubMed  Google Scholar 

  125. Yang, J.; Wang, Y. N.; Yang, J.; Pang, Y. J.; Zhu, X. Q.; Lu, Y. Z.; Wu, Y. T.; Wang, J. J.; Chen, H.; Kou, Z. K. et al. Quench-induced surface engineering boosts alkaline freshwater and seawater oxygen evolution reaction of porous NiCo2O4 nanowires. Small 2022, 18, 2106187.

    Article  CAS  Google Scholar 

  126. Yan, X. D.; Tian, L. H.; He, M.; Chen, X. B. Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 2011, 15, 6015–6021.

    Article  Google Scholar 

  127. Zhang, B. W.; Qi, Z. Y.; Wu, Z. S.; Lui, Y. H.; Kim, T. H.; Tang, X. H.; Zhou, L.; Huang, W. Y.; Hu, S. Defect-rich 2D material networks for advanced oxygen evolution catalysts. ACS Energy Lett. 2019, 4, 328–336.

    Article  CAS  Google Scholar 

  128. Arandiyan, H.; Mofarah, S. S.; Sorrell, C. C.; Doustkhah, E.; Sajjadi, B.; Hao, D.; Wang, Y.; Sun, H. Y.; Ni, B. J.; Rezaei, M. Defect engineering of oxide perovskites for catalysis and energy storage: Synthesis of chemistry and materials science. Chem. Soc. Rev. 2021, 50, 10116–10211.

    Article  CAS  PubMed  Google Scholar 

  129. Jang, E. J.; Lee, J.; Kwak, J. H. Morphology change and phase transformation of alumina related to defect sites and its use in catalyst preparation. Catal. Today 2020, 352, 323–328.

    Article  CAS  Google Scholar 

  130. Zhang, H.; An, Q.; Su, Y.; Quan, X.; Chen, S. Co3O4 with upshifted d-band center and enlarged specific surface area by single-atom Zr doping for enhanced PMS activation. J. Hazard. Mater. 2023, 448, 130987.

    Article  CAS  PubMed  Google Scholar 

  131. Zhou, C. H.; Zhao, S. M.; Meng, H. B.; Han, Y.; Jiang, Q. Y.; Wang, B. S.; Shi, X. F.; Zhang, W. S.; Zhang, L.; Zhang, R. F. RuCoOx. nanofoam as a high-performance trifunctional electrocatalyst for rechargeable zinc-air batteries and water splitting. Nano Lett. 2021, 21, 9633–9641.

    Article  CAS  PubMed  Google Scholar 

  132. Liu, J. Y.; Meng, R.; Jian, P. M.; Jian, R. Q. CeO2 nanoparticle-decorated Co3O4 microspheres for selective oxidation of ethylbenzene with molecular oxygen under solvent- and additivefree conditions. ACS Sustain. Chem. Eng. 2020, 8, 16791–16802.

    Article  CAS  Google Scholar 

  133. Ni, M. M.; Zhu, Y. J.; Guo, C. F.; Chen, D. L.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Efficient visible-light-driven CO2 methanation with self-regenerated oxygen vacancies in Co3O4/NiCo2O4 hetero-nanocages: Vacancy-mediated selective photocatalysis. ACS Catal. 2023, 13, 2502–2512.

    Article  Google Scholar 

  134. Zhang, R. R.; Pan, L.; Guo, B. B.; Huang, Z. F.; Chen, Z. X.; Wang, L.; Zhang, X. W.; Guo, Z. Y.; Xu, W.; Loh, K. P. et al. Tracking the role of defect types in Co3O4 structural evolution and active motifs during oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 2271–2281.

    Article  CAS  PubMed  Google Scholar 

  135. Savita.; Dani, S.; Kumar, S.; Singh, F.; Vij, A.; Thakur, A. Probing the defects and trap distribution in MgAl2O4 nanocrystals through electron spin resonance and thermoluminescence. J. Phys. D: Appl. Phys. 2021, 54, 335303.

    Article  CAS  Google Scholar 

  136. Savita.; Kumar, S.; Vij, A.; Thakur, A. Cr dopant induced tailoring of intrinsic defects and trap distribution in MgAl2O4 nanocrystals: Electron spin resonance and thermoluminescence. J. Phys. D: Appl. Phys. 2023, 56, 075301.

    Article  Google Scholar 

  137. Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Yang, C. M.; Zhou, L.; Huang, Y. C.; Li, Y. F.; Zhou, B.; Zou, Y. Q.; Wang, S. Y. Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv. Mater. 2022, 34, 2107185.

    Article  CAS  Google Scholar 

  138. Li, R. J.; Zheng, M.; Zhou, X.; Zhang, D.; Shi, Y.; Li, C. X.; Yang, M. Carbon vacancies in porous g-C3N4 nanosheets induced robust H2O2 production for highly efficient photocatalysis-self-Fenton system for metronidazole degradation. Chem. Eng. J. 2023, 464, 142584.

    Article  CAS  Google Scholar 

  139. Sun, Y. M.; Ren, X.; Sun, S. N.; Liu, Z.; Xi, S. B.; Xu, Z. J. Engineering high-spin state cobalt cations in spinel zinc cobalt oxide for spin channel propagation and active site enhancement in water oxidation. Angew. Chem. 2021, 133, 14657–14665.

    Article  Google Scholar 

  140. Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.

    Article  PubMed  Google Scholar 

  141. Li, D. H.; Jia, Y.; Chang, G. J.; Chen, J.; Liu, H. W.; Wang, J. C.; Hu, Y. F.; Xia, Y. Z.; Yang, D. J.; Yao, X. D. A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 2018, 4, 2345–2356.

    Article  CAS  Google Scholar 

  142. Liu, J. Y.; Tang, H.; Jian, P. M.; Liu, B. Oxygen-vacancy defect engineering to boost the aerobic oxidation of limonene over Co3O4 nanocubes. Appl. Catal. B: Environ. 2023, 334, 122828.

    Article  CAS  Google Scholar 

  143. Shan, J. Q.; Ye, C.; Chen, S. M.; Sun, T. L.; Jiao, Y.; Liu, L. M.; Zhu, C. Z.; Song, L.; Han, Y.; Jaroniec, M. et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J. Am. Chem. Soc. 2021, 143, 5201–5211.

    Article  CAS  PubMed  Google Scholar 

  144. Ren, J.; Chi, H. Y.; Tan, L.; Peng, Y. K.; Li, G. C.; Li, M. M. J.; Zhao, Y. F.; Duan, X. Semi- quantitative determination of active sites in heterogeneous catalysts for photo/electrocatalysis. J. Mater. Chem. A 2023, 11, 2528–2543.

    Article  CAS  Google Scholar 

  145. Wang, Z.; Henke, S.; Paulus, M.; Welle, A.; Fan, Z. Y.; Rodewald, K.; Rieger, B.; Fischer, R. A. Defect creation in surface-mounted metal-organic framework thin films. ACS Appl. Mater. Interfaces 2020, 12, 2655–2661.

    Article  CAS  PubMed  Google Scholar 

  146. Ye, S. H.; Zhang, Y.; Xiong, W.; Xu, T. T.; Liao, P.; Zhang, P. Y.; Ren, X. Z.; He, C. X.; Zheng, L. R.; Ouyang, X. P. et al. Construction of tetrahedral CoO4 vacancies for activating the high oxygen evolution activity of Co3−xO4−δ porous nanosheet arrays. Nanoscale 2020, 12, 11079–11087.

    Article  CAS  PubMed  Google Scholar 

  147. Tong, X. J.; Zhang, Z. W.; Fang, Z. Y.; Guo, J. H.; Zheng, Y.; Liang, X. L.; Liu, R. P.; Zhang, L. T.; Chen, W. PdMoCu trimetallenes for nitrate electroreduction to ammonia. J. Phys. Chem. C 2023, 127, 5262–5270.

    Article  CAS  Google Scholar 

  148. Deng, Z. Q.; Liang, J.; Liu, Q.; Ma, C. Q.; Xie, L. S.; Yue, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chem. Eng. J. 2022, 435, 135104.

    Article  CAS  Google Scholar 

  149. Zhou, Y.; Meng, Y. L.; Wang, X. Z.; Luo, J. B.; Xia, H. H.; Li, W. L.; Zhang, J. Enhancing electro-reduction of nitrite to ammonia by loading Co3O4 on CuO to construct elecrocatalytic dual-sites. Dalton Trans. 2023, 52, 3260–3264.

    Article  CAS  PubMed  Google Scholar 

  150. Liu, M.; Mao, Q. Q.; Shi, K. K.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Electroreduction of nitrate to ammonia on palladium-cobalt-oxygen nanowire arrays. ACS Appl. Mater. Interfaces 2022, 14, 13169–13176.

    Article  CAS  PubMed  Google Scholar 

  151. Xie, L. S.; Liu, Q.; Sun, S. J.; Hu, L.; Zhang, L. C.; Zhao, D. L.; Liu, Q.; Chen, J.; Li, J.; Ouyang, L. et al. High-efficiency electrosynthesis of ammonia with selective reduction of nitrate in neutral media enabled by self-supported Mn2CoO4 nanoarray. ACS Appl. Mater. Interfaces 2022, 14, 33242–33247.

    Article  CAS  Google Scholar 

  152. Li, J.; Zhao, D. L.; Zhang, L. C.; Ren, Y. C.; Yue, L. C.; Li, Z. R.; Sun, S. J.; Luo, J. S.; Chen, Q. Y.; Li, T. S. et al. Boosting electrochemical nitrate-to-ammonia conversion by self-supported MnCo2O4 nanowire array. J Colloid Interface Sci. 2023, 629, 805–812.

    Article  CAS  PubMed  Google Scholar 

  153. Liu, Q.; Xie, L. S.; Liang, J.; Ren, Y. C.; Wang, Y. Y.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo2O4 nanowire array. Small 2022, 18, 2106961.

    Article  CAS  Google Scholar 

  154. Li, K.; Chen, C.; Bian, X. C.; Sun, T. H.; Jia, J. P. Electrolytic nitrate reduction using Co3O4 rod-like and sheet-like cathodes with the control of (220) facet exposure and Co2+/Co3+ ratio. Electrochim. Acta 2020, 362, 137121.

    Article  CAS  Google Scholar 

  155. Wu, X.; Liu, Z. G.; Gao, T. Y.; Li, Z. Z.; Song, Z. H.; Tang, J.; Feng, F.; Qu, C. Y.; Yao, F. B.; Tang, C. J. Boosting electrocatalytic reduction of nitrate to ammonia over Co3O4 nanosheets with oxygen vacancies. Metals 2023, 13, 799.

    Article  CAS  Google Scholar 

  156. Li, C.; Xu, R. Z.; Ma, S. X.; Xie, Y. H.; Qu, K. G.; Bao, H. F.; Cai, W. W.; Yang, Z. H. Sulfur vacancies in ultrathin cobalt sulfide nanoflowers enable boosted electrocatalytic activity of nitrogen reduction reaction. Chem. Eng. J. 2021, 415, 129018.

    Article  CAS  Google Scholar 

  157. Deng, Z. Q.; Ma, C. Q.; Li, Z. R.; Luo, Y. S.; Zhang, L. C.; Sun, S. J.; Liu, Q.; Du, J.; Lu, Q. P.; Zheng, B. Z. et al. High-efficiency electrochemical nitrate reduction to ammonia on a Co3O4 nanoarray catalyst with cobalt vacancies. ACS Appl. Mater. Interfaces 2022, 14, 46595–46602.

    Article  CAS  PubMed  Google Scholar 

  158. Liu, D.; Qiao, L. L.; Chen, Y. Y.; Zhou, P. F.; Feng, J. X.; Leong, C. C.; Ng, K. W.; Peng, S. J.; Wang, S. P.; Ip, W. F. et al. Electrocatalytic reduction of nitrate to ammonia on low-cost manganese-incorporated Co3O4 nanotubes. Appl. Catal. B: Environ. 2023, 324, 122293.

    Article  CAS  Google Scholar 

  159. Gao, J. N.; Jiang, B.; Ni, C. C.; Qi, Y. F.; Bi, X. J. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: Mechanism exploration from both experimental and DFT studies. Chem. Eng. J. 2020, 382, 123034.

    Article  CAS  Google Scholar 

  160. Niu, Z. D.; Fan, S. Y.; Li, X. Y.; Yang, J.; Wang, J. G.; Tao, Y. Y.; Chen, G. H. Tailored electronic structure by sulfur filling oxygen vacancies boosts electrocatalytic nitrogen oxyanions reduction to ammonia. Chem. Eng. J. 2023, 451, 138890.

    Article  CAS  Google Scholar 

  161. Jin, T.; Wang, J. T.; Gong, Y.; Zheng, Q.; Wang, T. X.; Wu, R. Q.; Lyu, Y.; Liu, X. F. Mechanochemical-tuning size dependence of iridium single atom and nanocluster toward highly selective ammonium production. Chem. Catal. 2023, 3, 100477.

    Article  CAS  Google Scholar 

  162. Niu, Z. D.; Fan, S. Y.; Li, X. Y.; Liu, Z. Y.; Wang, J.; Duan, J.; Tadé, M. O.; Liu, S. M. Facile tailoring of the electronic structure and the d-band center of copper-doped cobaltate for efficient nitrate electrochemical hydrogenation. ACS Appl. Mater. Interfaces 2022, 14, 35477–35484.

    Article  CAS  PubMed  Google Scholar 

  163. Duan, W. J.; Chen, Y. Y.; Ma, H. X.; Lee, J. F.; Lin, Y. J.; Feng, C. H. In situ reconstruction of metal oxide cathodes for ammonium generation from high-strength nitrate wastewater: Elucidating the role of the substrate in the performance of Co3O4−x. Environ. Sci. Technol. 2023, 57, 3893–3904.

    Article  CAS  PubMed  Google Scholar 

  164. Carvajal, D.; Arcas, R.; Mesa, C. A.; Giménez, S.; Fabregat-Santiago, F.; Mas-Marzá, E. Role of Pd in the electrochemical hydrogenation of nitrobenzene using CuPd electrodes. Adv. Sustain. Syst. 2022, 6, 2100367.

    Article  CAS  Google Scholar 

  165. Moya, A.; Creus, J.; Romero, N.; Alemán, J.; Solans-Monfort, X.; Philippot, K.; García-Antón, J.; Sala, X.; Mas-Ballesté, R. Organocatalytic vs. Ru-based electrochemical hydrogenation of nitrobenzene in competition with the hydrogen evolution reaction. Dalton Trans. 2020, 49, 6446–6456.

    Article  CAS  PubMed  Google Scholar 

  166. Wu, S. T.; Huang, X.; Zhang, H. L.; Wei, Z. D.; Wang, M. Efficient electrochemical hydrogenation of nitroaromatics into arylamines on a CuCo2O4 spinel cathode in an alkaline electrolyte. ACS Catal. 2022, 12, 58–65.

    Article  CAS  Google Scholar 

  167. Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018, 8, 1510–1519.

    Article  CAS  Google Scholar 

  168. Fu, J. W.; Jiang, K. X.; Qiu, X. Q.; Yu, J. G.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222–243.

    Article  CAS  Google Scholar 

  169. Liu, M.; Liu, M. X.; Wang, X. M.; Kozlov, S. M.; Cao, Z.; De Luna, P.; Li, H. M.; Qiu, X. Q.; Liu, K.; Hu, J. H. et al. Quantum-dot-derived catalysts for CO2 reduction reaction. Joule 2019, 3, 1703–1718.

    Article  CAS  Google Scholar 

  170. Tekalgne, M. A.; Do, H. H.; Hasani, A.; Van Le, Q.; Jang, H. W.; Ahn, S. H.; Kim, S. Y. Two-dimensional materials and metal-organic frameworks for the CO2 reduction reaction. Mater. Today Adv. 2020, 5, 100038.

    Article  Google Scholar 

  171. Lv, J. J.; Yin, R. N.; Zhou, L. M.; Li, J.; Kikas, R.; Xu, T.; Wang, Z. J.; Jin, H. L.; Wang, X.; Wang, S. Microenvironment engineering for the electrocatalytic CO2 reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202207252.

    Article  CAS  Google Scholar 

  172. Asadi, M.; Kumar, B.; Behranginia, A.; Rosen, B. A.; Baskin, A.; Repnin, N.; Pisasale, D.; Phillips, P.; Zhu, W.; Haasch, R. et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 2014, 5, 4470.

    Article  CAS  PubMed  Google Scholar 

  173. Gao, S.; Jiao, X. C.; Sun, Z. T.; Zhang, W. H.; Sun, Y. F.; Wang, C. M.; Hu, Q. T.; Zu, X. L.; Yang, F.; Yang, S. Y. et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem. 2016, 128, 708–712.

    Article  Google Scholar 

  174. Yang, S. C.; Su, W. N.; Rick, J.; Lin, S. D.; Liu, J. Y.; Pan, C. J.; Lee, J. F.; Hwang, B. J. Oxygen vacancy engineering of cerium oxides for carbon dioxide capture and reduction. ChemSusChem 2013, 6, 1326–1329.

    Article  CAS  PubMed  Google Scholar 

  175. Liu, L. J.; Zhao, C. Y.; Li, Y. Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2−x nanoparticles at room temperature. J. Phys. Chem. C 2012, 116, 7904–7912.

    Article  CAS  Google Scholar 

  176. Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.

    Article  CAS  PubMed  Google Scholar 

  177. Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504–507.

    Article  CAS  PubMed  Google Scholar 

  178. Li, C. W.; Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231–7234.

    Article  CAS  PubMed  Google Scholar 

  179. Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

    Article  CAS  PubMed  Google Scholar 

  180. Sekar, P.; Calvillo, L.; Tubaro, C.; Baron, M.; Pokle, A.; Carraro, F.; Martucci, A.; Agnoli, S. Cobalt spinel nanocubes on N-doped graphene: A synergistic hybrid electrocatalyst for the highly selective reduction of carbon dioxide to formic acid. ACS Catal. 2017, 7, 7695–7703.

    Article  CAS  Google Scholar 

  181. Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

    Article  CAS  PubMed  Google Scholar 

  182. Shi, X. J.; Huang, Y.; Bo, Y. N.; Duan, D. L.; Wang, Z. Y.; Cao, J. J.; Zhu, G. Q.; Ho, W. K.; Wang, L. Q.; Huang, T. T. et al. Highly selective photocatalytic CO2 methanation with water vapor on single-atom platinum-decorated defective carbon nitride. Angew. Chem., Int. Ed. 2022, 61, e202203063.

    Article  CAS  Google Scholar 

  183. Yan, X. C.; Jia, Y.; Yao, X. D. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 2018, 47, 7628–7658.

    Article  CAS  PubMed  Google Scholar 

  184. Wang, Y.; Li, J.; Wei, Z. D. Transition-metal-oxide-based catalysts for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 8194–8209.

    Article  CAS  Google Scholar 

  185. Cheng, F. Y.; Shen, J.; Peng, B.; Pan, Y. D.; Tao, Z. L.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84.

    Article  CAS  PubMed  Google Scholar 

  186. Zhang, Y. Q.; Li, M.; Hua, B.; Wang, Y.; Sun, Y. F.; Luo, J. L. A strongly cooperative spinel nanohybrid as an efficient bifunctional oxygen electrocatalyst for oxygen reduction reaction and oxygen evolution reaction. Appl. Catal. B: Environ. 2018, 236, 413–419.

    Article  CAS  Google Scholar 

  187. Xu, Y. J.; Sumboja, A.; Zong, Y.; Darr, J. A. Bifunctionally active nanosized spinel cobalt nickel sulfides for sustainable secondary zinc-air batteries: Examining the effects of compositional tuning on OER and ORR activity. Catal. Sci. Technol. 2020, 10, 2173–2182.

    Article  CAS  Google Scholar 

  188. Si, C. H.; Zhang, Y. L.; Zhang, C. Q.; Gao, H.; Ma, W. S.; Lv, L. F.; Zhang, Z. H. Mesoporous nanostructured spinel-type MFe2O4 (M = Co, Mn, Ni) oxides as efficient bi-functional electrocatalysts towards oxygen reduction and oxygen evolution. Electrochim. Acta 2017, 245, 829–838.

    Article  CAS  Google Scholar 

  189. Lu, Y. T.; Chien, Y. J.; Liu, C. F.; You, T. H.; Hu, C. C. Active site-engineered bifunctional electrocatalysts of ternary spinel oxides, M0.1Ni0.9Co2O4 (M: Mn, Fe, Cu, Zn) for the air electrode of rechargeable zinc-air batteries. J. Mater. Chem. A 2017, 5, 21016–21026.

    Article  CAS  Google Scholar 

  190. Wang, W. H.; Kuai, L.; Cao, W.; Huttula, M.; Ollikkala, S.; Ahopelto, T.; Honkanen, A. P.; Huotari, S.; Yu, M. K.; Geng, B. Y. Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)- and cobalt(II)-rich surfaces for superior bifunctional oxygen electrocatalysis. Angew. Chem. 2017, 129, 15173–15177.

    Article  Google Scholar 

  191. Fan, H.; Yang, L. J.; Wang, Y.; Zhang, X. L.; Wu, Q. S.; Che, R. C.; Liu, M.; Wu, Q.; Wang, X. Z.; Hu, Z. Boosting oxygen reduction activity of spinel CoFe2O4 by strong interaction with hierarchical nitrogen-doped carbon nanocages. Sci. Bull. 2017, 62, 1365–1372.

    Article  CAS  Google Scholar 

  192. Zhang, T. W.; Li, Z. F.; Wang, L. K.; Sun, P.; Zhang, Z. X.; Wang, S. W. Spinel MnCo2O4 nanoparticles supported on three-dimensional graphene with enhanced mass transfer as an efficient electrocatalyst for the oxygen reduction reaction. ChemSusChem 2018, 11, 2730–2736.

    Article  CAS  PubMed  Google Scholar 

  193. Wang, Q.; Xue, Y. J.; Sun, S. S.; Yan, S. S.; Miao, H.; Liu, Z. P. Facile synthesis of ternary spinel Co-Mn-Ni nanorods as efficient bi-functional oxygen catalysts for rechargeable zinc-air batteries. J. Power Sources 2019, 435, 226761.

    Article  CAS  Google Scholar 

  194. Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.

    Article  CAS  PubMed  Google Scholar 

  195. Zhou, Y.; Sun, S. N.; Xi, S. B.; Duan, Y.; Sritharan, T.; Du, Y. H.; Xu, Z. J. Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1−xO6] octahedra in spinel oxide. Adv. Mater. 2018, 30, 1705407.

    Article  Google Scholar 

  196. Liu, J. J.; Liu, J. Z.; Song, W. W.; Wang, F.; Song, Y. The role of electronic interaction in the use of Ag and Mn3O4 hybrid nanocrystals covalently coupled with carbon as advanced oxygen reduction electrocatalysts. J. Mater. Chem. A 2014, 2, 17477–17488.

    Article  CAS  Google Scholar 

  197. Osgood, H.; Devaguptapu, S. V.; Xu, H.; Cho, J.; Wu, G. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 2016, 11, 601–625.

    Article  CAS  Google Scholar 

  198. Huang, K.; Liu, J. C.; Wang, L.; Chang, G.; Wang, R. Y.; Lei, M.; Wang, Y. G.; He, Y. B. Mixed valence CoCuMnOx spinel nanoparticles by sacrificial template method with enhanced ORR performance. Appl. Surf. Sci. 2019, 487, 1145–1151.

    Article  CAS  Google Scholar 

  199. Kim, J.; Ko, W.; Yoo, J. M.; Paidi, V. K.; Jang, H. Y.; Shepit, M.; Lee, J.; Chang, H.; Lee, H. S.; Jo, J. et al. Structural insights into multi-metal spinel oxide nanoparticles for boosting oxygen reduction electrocatalysis. Adv. Mater. 2022, 34, 2107868.

    Article  CAS  Google Scholar 

  200. Yang, Y.; Xiong, Y.; Holtz, M. E.; Feng, X. R.; Zeng, R.; Chen, G.; DiSalvo, F. J.; Muller, D. A.; Abruøa, H. D. Octahedral spinel electrocatalysts for alkaline fuel cells. Proc. Natl. Acad Sci. USA 2019, 116, 24425–24432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang, H.; Liu, R. P.; Li, Y. T.; Lü, X. J.; Wang, Q.; Zhao, S. Q.; Yuan, K. J.; Cui, Z. M.; Li, X.; Xin, S. et al. Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule 2018, 2, 337–348.

    Article  CAS  Google Scholar 

  202. Mu, C.; Mao, J.; Guo, J. X.; Guo, Q. J.; Li, Z. Q.; Qin, W. J.; Hu, Z. P.; Davey, K.; Ling, T.; Qiao, S. Z. Rational design of spinel cobalt vanadate oxide Co2VO4 for superior electrocatalysis. Adv. Mater. 2020, 32, 1907168.

    Article  CAS  Google Scholar 

  203. Chen, S.; Huang, D. M.; Liu, D. Y.; Sun, H. Z.; Yan, W. J.; Wang, J. C.; Dong, M.; Tong, X. L.; Fan, W. B. Hollow and porous NiCo2O4 nanospheres for enhanced methanol oxidation reaction and oxygen reduction reaction by oxygen vacancies engineering. Appl. Catal. B: Environ. 2021, 291, 120065.

    Article  CAS  Google Scholar 

  204. Yuan, H.; Li, J. T.; Yang, W.; Zhuang, Z. C.; Zhao, Y.; He, L.; Xu, L.; Liao, X. B.; Zhu, R. Q.; Mai, L. Q. Oxygen vacancy-determined highly efficient oxygen reduction in NiCo2O4/hollow carbon spheres. ACS Appl. Mater. Interfaces 2018, 10, 16410–16417.

    Article  CAS  PubMed  Google Scholar 

  205. Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39.

    Article  CAS  PubMed  Google Scholar 

  206. Wahl, S.; El-Refaei, S. M.; Buzanich, A. G.; Amsalem, P.; Lee, K. S.; Koch, N.; Doublet, M. L.; Pinna, N. Zn0.35Co0.65—A stable and highly active oxygen evolution catalyst formed by zinc leaching and tetrahedral coordinated cobalt in wurtzite structure. Adv. Energy Mater. 2019, 9, 1900328.

    Article  Google Scholar 

  207. Menezes, P. W.; Indra, A.; Bergmann, A.; Chernev, P.; Walter, C.; Dau, H.; Strasser, P.; Driess, M. Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt-zinc oxide catalysts for efficient oxidation of water. J. Mater. Chem. A 2016, 4, 10014–10022.

    Article  CAS  Google Scholar 

  208. Zhang, L. L.; Hu, Y. J.; Jiang, K.; Li, K.; Liu, Y. Q.; Wang, D.; Ye, Y. Y. The role of sulfur doping in determining the performance of Fe/N-C based electrocatalysts for oxygen reduction reactions. J. Electrochem. Soc. 2021, 168, 054523.

    Article  CAS  Google Scholar 

  209. Liu, S.; Zhang, B. S.; Cao, Y.; Wang, H. L.; Zhang, Y. M.; Zhang, S. J.; Li, Y. T.; Gong, H. C.; Liu, S. Z.; Yang, Z. X. et al. Understanding the effect of nickel doping in cobalt spinel oxides on regulating spin state to promote the performance of the oxygen reduction reaction and zinc-air batteries. ACS Energy Lett. 2023, 8, 159–168.

    Article  CAS  Google Scholar 

  210. Zhang, Z.; Tan, G. Y.; Kumar, A.; Liu, H.; Yang, X.; Gao, W. Q.; Bai, L.; Chang, H. Q.; Kuang, Y.; Li, Y. P. et al. First-principles study of oxygen evolution on Co3O4 with short-range ordered Ir doping. Mol. Catal. 2023, 535, 112852.

    Article  CAS  Google Scholar 

  211. Xiong, Y.; Yang, Y.; Feng, X. R.; DiSalvo, F. J.; Abruøa, H. D. A strategy for increasing the efficiency of the oxygen reduction reaction in Mn-doped cobalt ferrites. J. Am. Chem. Soc. 2019, 141, 4412–4421.

    Article  CAS  PubMed  Google Scholar 

  212. Lu, Q.; Guo, Y. N.; Mao, P.; Liao, K. M.; Zou, X. H.; Dai, J.; Tan, P.; Ran, R.; Zhou, W.; Ni, M. et al. Rich atomic interfaces between sub-1 nm RuOx clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Zn-air batteries. Energy Storage Mater. 2020, 32, 20–29.

    Article  Google Scholar 

  213. Chen, X. H.; Li, T.; Li, X. L.; Lei, J. L.; Li, N. B.; Luo, H. Q. Oxyanion-coordinated Co-based catalysts for optimized hydrogen evolution: The feedback of adsorbed anions to the catalytic activity and mechanism. ACS Catal. 2023, 13, 6721–6729.

    Article  CAS  Google Scholar 

  214. Xie, X.; Fan, Y. X.; Tian, W. Y.; Zhang, M.; Cai, J. L.; Zhang, X. G.; Ding, J.; Liu, Y. S.; Lu, S. Y. Construction of Ru/WO3 with hetero-interface structure for efficient hydrogen evolution reaction. J. Energy Chem. 2023, 83, 150–157.

    Article  CAS  Google Scholar 

  215. Zeb, Z.; Huang, Y. C.; Chen, L. L.; Zhou, W. B.; Liao, M. H.; Jiang, Y. Y.; Li, H. T.; Wang, L. M.; Wang, L.; Wang, H. et al. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord. Chem. Rev. 2023, 482, 215058.

    Article  CAS  Google Scholar 

  216. Zhang, H.; Li, W. Q.; Feng, X.; Zhu, L.; Fang, Q. Z.; Li, S.; Wang, L. Y.; Li, Z. J.; Kou, Z. K. A chainmail effect of ultrathin N-doped carbon shell on Ni2P nanorod arrays for efficient hydrogen evolution reaction catalysis. J. Colloid Interface Sci. 2022, 607, 281–289.

    Article  CAS  PubMed  Google Scholar 

  217. Ma, S.; Yang, P. Y.; Chen, J. L.; Wu, Z. H.; Li, X. Q.; Zhang, H. NiCu alloys anchored Co3O4 nanowire arrays as efficient hydrogen evolution electrocatalysts in alkaline and neutral media. J. Colloid Interface Sci. 2023, 642, 604–611.

    Article  CAS  PubMed  Google Scholar 

  218. Wu, J.; Wang, X.; Zheng, W. H.; Sun, Y.; Xie, Y.; Ma, K. K.; Zhang, Z.; Liao, Q. L.; Tian, Z.; Kang, Z. et al. Identifying and interpreting geometric configuration-dependent activity of spinel catalysts for water reduction. J. Am. Chem. Soc. 2022, 144, 19163–19172.

    Article  CAS  PubMed  Google Scholar 

  219. Pawar, A. A.; Bandal, H. A.; Kim, H. Spinel type Fe3O4 polyhedron supported on nickel foam as an electrocatalyst for water oxidation reaction. J. Alloys Compd. 2021, 863, 158742.

    Article  CAS  Google Scholar 

  220. Zhang, H. X.; Zhang, J. H.; Li, Y. H.; Jiang, H. B.; Jiang, H.; Li, C. Z. Continuous oxygen vacancy engineering of the Co3O4 layer for an enhanced alkaline electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 13506–13510.

    Article  CAS  Google Scholar 

  221. Xiao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.

    Article  CAS  Google Scholar 

  222. Jin, J.; Yin, J.; Liu, H. B.; Huang, B. L.; Hu, Y.; Zhang, H.; Sun, M. Z.; Peng, Y.; Xi, P. X.; Yan, C. H. Atomic sulfur filling oxygen vacancies optimizes H absorption and boosts the hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 14117–14123.

    Article  CAS  Google Scholar 

  223. Wei, J. X.; Xiao, K.; Chen, Y. X.; Guo, X. P.; Huang, B. L.; Liu, Z. Q. In situ precise anchoring of Pt single atoms in spinel Mn3O4 for a highly efficient hydrogen evolution reaction. Energy Environ. Sci. 2022, 15, 4592–4600

    Article  CAS  Google Scholar 

  224. Luo, M. H.; Sun, W. P.; Xu, B. B.; Pan, H. G.; Jiang, Y. Z. Interface engineering of air electrocatalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2021, 11, 2002762.

    Article  CAS  Google Scholar 

  225. Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

    Article  Google Scholar 

  226. Li, J. T.; Chu, D.; Baker, D. R.; Dong, H.; Jiang, R. Z.; Tran, D. T. Distorted inverse spinel nickel cobaltite grown on a MoS2 plate for significantly improved water splitting activity. Chem. Mater. 2019, 31, 7590–7600.

    Article  CAS  Google Scholar 

  227. Yao, Y.; Wang, H. J.; Yuan, X. Z.; Li, H.; Shao, M. H. Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Lett. 2019, 4, 1336–1341.

    Article  CAS  Google Scholar 

  228. Wang, J.; Nan, H. F.; Tian, Y.; Chu, K. FeMo3S4 for efficient nitrogen reduction reaction. ACS Sustain. Chem. Eng. 2020, 8, 12733–12740.

    Article  CAS  Google Scholar 

  229. Liu, C. W.; Tian, A.; Li, Q. Y.; Wang, T. Y.; Qin, G. W.; Li, S.; Sun, C. H. 2D, metal-free electrocatalysts for the nitrogen reduction reaction. Adv. Funct. Mater. 2023, 33, 2210759.

    Article  CAS  Google Scholar 

  230. Wei, Z. X.; Zhang, Y. F.; Wang, S. Y.; Wang, C. Y.; Ma, J. M. Fe-doped phosphorene for the nitrogen reduction reaction. J. Mater. Chem. A 2018, 6, 13790–13796.

    Article  CAS  Google Scholar 

  231. Li, X. H.; Xue, C.; Zhou, X. R.; Wei, Y. A.; Yu, Y. J.; Fu, Y.; Liu, W. J.; Lan, Y. Q. Polyoxometalate-derived bimetallic catalysts for the nitrogen reduction reaction. Mater. Chem. Front. 2023, 7, 720–727.

    Article  CAS  Google Scholar 

  232. Wen, J.; Chang, H. H.; Huang, T.; Hossain, M.; Liu, Z. C.; Sun, H. D.; Zhu, Y. S.; Chen, Y. H.; Huang, Q. H.; Wu, Y. P. A simple synthesis of Co3O4@CNT to boost electrochemical nitrogen fixation. Electrochim. Acta 2021, 367, 137421.

    Article  CAS  Google Scholar 

  233. Luo, S. J.; Li, X. M.; Zhang, B. H.; Luo, Z. L.; Luo, M. MOF-derived Co3O4@NC with core–shell structures for N2 electrochemical reduction under ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 26891–26897.

    Article  CAS  PubMed  Google Scholar 

  234. Wang, X. X.; Zhao, L.; Zhao, R.; Zhou, Y. X.; Wang, S. Y.; Chi, X. Y.; Xiong, Y. Y.; Yao, Y. B.; Zhang, K. X.; Li, Y. J. et al. Enhanced electrocatalytic nitrogen reduction inspired by a lightning rod effect on urchin-like Co3O4 catalyst. Chem. Eng. J. 2022, 450, 138316.

    Article  CAS  Google Scholar 

  235. Li, P. S.; Zhou, Z. A.; Wang, Q.; Guo, M.; Chen, S. W.; Low, J. X.; Long, R.; Liu, W.; Ding, P. R.; Wu, Y. Y. et al. Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: Enhanced performance by oxygen vacancies. J. Am. Chem. Soc. 2020, 142, 12430–12439.

    Article  CAS  PubMed  Google Scholar 

  236. Chu, K.; Liu, Y. P.; Cheng, Y. H.; Li, Q. Q. Synergistic boron-dopants and boron-induced oxygen vacancies in MnO2 nanosheets to promote electrocatalytic nitrogen reduction. J. Mater. Chem. A 2020, 8, 5200–5208.

    Article  CAS  Google Scholar 

  237. Zhang, G.; Ji, Q. H.; Zhang, K.; Chen, Y.; Li, Z. H.; Liu, H. J.; Li, J. H.; Qu, J. H. Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation. Nano Energy 2019, 59, 10–16.

    Article  CAS  Google Scholar 

  238. Lai, F. L.; Feng, J. R.; Ye, X. B.; Zong, W.; He, G. J.; Yang, C.; Wang, W.; Miao, Y. E.; Pan, B. C.; Yan, W. S. et al. Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. J. Mater. Chem. A 2020, 8, 1652–1659.

    Article  CAS  Google Scholar 

  239. Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356–7361.

    Article  CAS  Google Scholar 

  240. Guo, C. Y.; Liu, X. J.; Gao, L. F.; Kuang, X.; Ren, X.; Ma, X. J.; Zhao, M. Z.; Yang, H.; Sun, X.; Wei, Q. Fe-doped Ni2P nanosheets with porous structure for electroreduction of nitrogen to ammonia under ambient conditions. Appl. Catal. B: Environ. 2020, 263, 118296.

    Article  CAS  Google Scholar 

  241. Lee, J.; Kumar, A.; Kim, M. G.; Yang, T.; Shao, X. D.; Liu, X. H.; Liu, Y.; Hong, Y.; Jadhav, A. R.; Liang, M. F. et al. Single-metal-atom dopants increase the Lewis acidity of metal oxides and promote nitrogen fixation. ACS Energy Lett. 2021, 6, 4299–4308.

    Article  CAS  Google Scholar 

  242. Wang, M. F.; Liu, S. S.; Ji, H. Q.; Liu, J.; Yan, C. L.; Qian, T. Unveiling the essential nature of Lewis basicity in thermodynamically and dynamically promoted nitrogen fixation. Adv. Funct. Mater. 2020, 30, 2001244.

    Article  CAS  Google Scholar 

  243. Yang, H. D.; Liu, Y.; Luo, S.; Zhao, Z. M.; Wang, X.; Luo, Y. T.; Wang, Z. X.; Jin, J.; Ma, J. T. Lateral-size- mediated efficient oxygen evolution reaction: Insights into the atomically thin quantum dot structure of NiFe2O4. ACS Catal. 2017, 7, 5557–5567

    Article  CAS  Google Scholar 

  244. Jiang, Y. Z.; Wang, M. F.; Zhang, L. F.; Liu, S. S.; Cao, Y. F.; Qian, S. Y.; Cheng, Y.; Xu, X. N.; Yan, C. L.; Qian, T. Distorted spinel ferrite heterostructure triggered by alkaline earth metal substitution facilitates nitrogen localization and electrocatalytic reduction to ammonia. Chem. Eng. J. 2022, 450, 138226.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 22272047, 21905088, and 22102155), the China Postdoctoral Science Foundation (Nos. 2021M692909 and 2022T150587), and the Provincial Natural Science Foundation of Hunan (No. 2022JJ10006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijie Kong or Yanyong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Guo, J., Liu, Ly. et al. Defect spinel oxides for electrocatalytic reduction reactions. Nano Res. 17, 3547–3570 (2024). https://doi.org/10.1007/s12274-023-6339-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6339-x

Keywords

Navigation