Skip to main content
Log in

RNA-based nanomedicines and their clinical applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

RNA-based nanomedicines encompass a range of therapeutic approaches that utilize RNA molecules or molecules that target RNAs for the treatment or prevention of diseases. These include antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), endogenous microRNAs (miRNAs), messenger RNAs (mRNAs), clustered regularly interspersed short palindromic repeats-associated protein 9 (CRISPR/Cas9), single guide RNAs (sgRNAs), as well as RNA aptamers. These therapeutic agents exert their effects through various mechanisms such as gene inhibition, addition, replacement, and editing. The advancement of RNA biology and the field of RNA therapy has paved the way for the development and utilization of RNA-based nanomedicine in human healthcare. One remarkable example of RNA-based nanomedicine is the mRNA-based vaccines including mRNA-1273 (Moderna) and BNT162b2 (Pfizer/BioNTech) that have been successfully employed in response to the coronavirus disease 2019 (COVID-19) pandemic. This review aims to highlight the advantages of RNA-based nanomedicines, provides an overview of significant developments in delivery systems, elucidates the molecular mechanisms of action underlying RNA-based nanomedicines, and discusses their clinical applications. Additionally, the review will address the existing challenges and innovations in delivery platforms while exploring the future possibilities for these promising RNA-based nanomedicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rich, A.; Davies, D. R. A new two stranded helical structure: Polyadenylic acid and polyuridylic acid. J. Am. Chem. Soc. 1956, 78, 3548–3549.

    CAS  Google Scholar 

  2. Lee, R. C.; Feinbaum, R. L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854.

    CAS  Google Scholar 

  3. Fire, A.; Xu, S. Q.; Montgomery, M. K.; Kostas, S. A.; Driver, S. E.; Mello, C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811.

    CAS  Google Scholar 

  4. Crick, F. H. On protein synthesis. Symp. Soc. Exp. Biol. 1959, 12, 138–163.

    Google Scholar 

  5. Brenner, S.; Jacob, F.; Meselson, M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 1961, 190, 576–581.

    CAS  Google Scholar 

  6. Gros, F.; Hiatt, H.; Gilbert, W.; Kurland, C. G.; Risebrough, R. W.; Watson, J. D. Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature 1961, 190, 581–585.

    CAS  Google Scholar 

  7. Berget, S. M.; Moore, C.; Sharp, P. A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl. Acad. Sci. USA 1977, 74, 3171–3175.

    CAS  Google Scholar 

  8. Chow, L. T.; Gelinas, R. E.; Broker, T. R.; Roberts, R. J. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 1977, 12, 1–8.

    CAS  Google Scholar 

  9. Faustino, N. A.; Cooper, T. A. Pre-mRNA splicing and human disease. Genes Dev. 2003, 17, 419–437.

    CAS  Google Scholar 

  10. Scotti, M. M.; Swanson, M. S. RNA mis-splicing in disease. Nat. Rev. Genet. 2016, 17, 19–32.

    CAS  Google Scholar 

  11. Zamecnik, P. C.; Stephenson, M. L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA 1978, 75, 280–284.

    CAS  Google Scholar 

  12. Dominski, Z.; Kole, R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 1993, 90, 8673–8677.

    CAS  Google Scholar 

  13. Roehr, B. Fomivirsen approved for CMV retinitis. J. Int. Assoc. Physicians AIDS Care 1999, 4, 14–16.

    Google Scholar 

  14. Baltimore, D. Viral RNA-dependent DNA polymerase: RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 1970, 226, 1209–1211.

    CAS  Google Scholar 

  15. Temin, H. M.; Mizutani, S. Viral RNA-dependent DNA polymerase: RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 1970, 226, 1211–1213.

    CAS  Google Scholar 

  16. Karikó, K.; Buckstein, M.; Ni, H. P.; Weissman, D. Suppression of RNA recognition by Toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005, 23, 165–175.

    Google Scholar 

  17. Baden, L. R.; El Sahly, H. M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S. A.; Rouphael, N.; Creech, C. B. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021, 384, 403–416.

    CAS  Google Scholar 

  18. Vogel, A. B.; Kanevsky, I.; Che, Y.; Swanson, K. A.; Muik, A.; Vormehr, M.; Kranz, L. M.; Walzer, K. C.; Hein, S.; Güler, A. et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature 2021, 592, 283–289.

    CAS  Google Scholar 

  19. Jackson, L. A.; Anderson, E. J.; Rouphael, N. G.; Roberts, P. C.; Makhene, M.; Coler, R. N.; McCullough, M. P.; Chappell, J. D.; Denison, M. R.; Stevens, L. J. et al. An mRNA vaccine against SARS-CoV-2 - preliminary report. N. Engl. J. Med. 2020, 383, 1920–1931.

    CAS  Google Scholar 

  20. Mulligan, M. J.; Lyke, K. E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson, K. A. et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020, 586, 589–593.

    CAS  Google Scholar 

  21. Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics-developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780.

    CAS  Google Scholar 

  22. Ray, K. K.; Landmesser, U.; Leiter, L. A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R. P. T.; Turner, T.; Visseren, F. L. J. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 2017, 376, 1430–1440.

    CAS  Google Scholar 

  23. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011, 12, 861–874.

    CAS  Google Scholar 

  24. Song, J.; Kim, Y. K. Targeting non-coding RNAs for the treatment of retinal diseases. Mol. Ther. Nucl. Acids 2021, 24, 284–293.

    CAS  Google Scholar 

  25. Chen, B. B.; Altman, R. B. Opportunities for developing therapies for rare genetic diseases: Focus on gain-of-function and allostery. Orphanet J. Rare Dis. 2017, 12, 61.

    CAS  Google Scholar 

  26. Wang, F.; Zuroske, T.; Watts, J. K. RNA therapeutics on the rise. Nat. Rev. Drug Discov. 2020, 19, 441–442.

    CAS  Google Scholar 

  27. Houseley, J.; Tollervey, D. The many pathways of RNA degradation. Cell 2009, 136, 763–776.

    CAS  Google Scholar 

  28. Bryson, T. E.; Anglin, C. M.; Bridges, P. H.; Cottle, R. N. Nuclease-mediated gene therapies for inherited metabolic diseases of the liver. Yale J. Biol. Med. 2017, 90, 553–566.

    CAS  Google Scholar 

  29. Nguyen, G. N.; Everett, J. K.; Kafle, S.; Roche, A. M.; Raymond, H. E.; Leiby, J.; Wood, C.; Assenmacher, C. A.; Merricks, E. P.; Long, C. T. et al. A long-term study of AAV gene therapy in dogs with hemophilia a identifies clonal expansions of transduced liver cells. Nat. Biotechnol. 2021, 39, 47–55.

    CAS  Google Scholar 

  30. Wu, Z. J.; Yang, H. Y.; Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 2010, 18, 80–86.

    CAS  Google Scholar 

  31. Sugo, T.; Terada, M.; Oikawa, T.; Miyata, K.; Nishimura, S.; Kenjo, E.; Ogasawara-Shimizu, M.; Makita, Y.; Imaichi, S.; Murata, S. et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J. Control. Release 2016, 237, 1–13.

    CAS  Google Scholar 

  32. Springer, A. D.; Dowdy, S. F. GalNAc-siRNA conjugates: Leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther. 2019, 28, 109–118.

    Google Scholar 

  33. Schlegel, M. K.; Foster, D. J.; Kel’in, A. V.; Zlatev, I.; Bisbe, A.; Jayaraman, M.; Lackey, J. G.; Rajeev, K. G.; Charissé, K.; Harp, J. et al. Chirality dependent potency enhancement and structural impact of glycol nucleic acid modification on siRNA. J. Am. Chem. Soc. 2017, 139, 8537–8546.

    CAS  Google Scholar 

  34. Kumar, P.; Degaonkar, R.; Guenther, D. C.; Abramov, M.; Schepers, G.; Capobianco, M.; Jiang, Y. F.; Harp, J.; Kaittanis, C.; Janas, M. M. et al. Chimeric siRNAs with chemically modified pentofuranose and hexopyranose nucleotides: Altritol-nucleotide (ANA) containing GalNAc-siRNA conjugates: In vitro and in vivo RNAi activity and resistance to 5′-exonuclease. Nucleic Acids Res. 2020, 48, 4028–4040.

    CAS  Google Scholar 

  35. Balwani, M.; Sardh, E.; Ventura, P.; Peiró, P. A.; Rees, D. C.; Stölzel, U.; Bissell, D. M.; Bonkovsky, H. L.; Windyga, J.; Anderson, K. E. et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 2020, 382, 2289–2301.

    CAS  Google Scholar 

  36. Hom, C.; Lu, J.; Liong, M.; Luo, H. Z.; Li, Z. X.; Zink, J. I.; Tamanoi, F. Mesoporous silica nanoparticles facilitate delivery of siRNA to shutdown signaling pathways in mammalian cells. Small 2010, 6, 1185–1190.

    CAS  Google Scholar 

  37. Popat, A.; Hartono, S. B.; Stahr, F.; Liu, J.; Qiao, S. Z.; Lu, G. Q. Mesoporous silicananoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale 2011, 3, 2801–2818.

    CAS  Google Scholar 

  38. Kim, J.; Eygeris, Y.; Gupta, M.; Sahay, G. Self-assembled mRNA vaccines. Adv. Drug Deliv. Rev. 2021, 170, 83–112.

    CAS  Google Scholar 

  39. Love, K. T.; Mahon, K. P.; Levins, C. G.; Whitehead, K. A.; Querbes, W.; Dorkin, J. R.; Qin, J.; Cantley, W.; Qin, L. L.; Racie, T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl. Acad. Sci. USA 2010, 107, 1864–1869.

    CAS  Google Scholar 

  40. Dong, Y. Z.; Love, K. T.; Dorkin, J. R.; Sirirungruang, S.; Zhang, Y. L.; Chen, D. L.; Bogorad, R. L.; Yin, H.; Chen, Y.; Vegas, A. J. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl. Acad. Sci. USA 2014, 111, 3955–3960.

    CAS  Google Scholar 

  41. Semple, S. C.; Akinc, A.; Chen, J. X.; Sandhu, A. P.; Mui, B. L.; Cho, C. K.; Sah, D. W. Y.; Stebbing, D.; Crosley, E. J.; Yaworski, E. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010, 28, 172–176.

    CAS  Google Scholar 

  42. Jayaraman, M.; Ansell, S. M.; Mui, B. L.; Tam, Y. K.; Chen, J. X.; Du, X. Y.; Butler, D.; Eltepu, L.; Matsuda, S.; Narayanannair, J. K. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem., Int. Ed. 2012, 51, 8529–8533.

    CAS  Google Scholar 

  43. Qiu, M.; Tang, Y.; Chen, J. J.; Muriph, R.; Ye, Z. F.; Huang, C. F.; Evans, J.; Henske, E. P.; Xu, Q. B. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl. Acad. Sci. USA 2022, 119, e2116271119.

    CAS  Google Scholar 

  44. Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L. T.; Dilliard, S. A.; Siegwart, D. J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-cas gene editing. Nat. Nanotechnol. 2020, 15, 313–320.

    CAS  Google Scholar 

  45. Kulkarni, J. A.; Cullis, P. R.; van der Meel, R. Lipid nanoparticles enabling gene therapies: From concepts to clinical utility. Nucleic Acid Ther. 2019, 28, 146–157.

    Google Scholar 

  46. Cheng, X. W.; Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 2016, 99, 129–137.

    CAS  Google Scholar 

  47. Dilliard, S. A.; Cheng, Q.; Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl. Acad. Sci. USA 2021, 118, e2109256118.

    CAS  Google Scholar 

  48. Melamed, J. R.; Yerneni, S. S.; Arral, M. L.; LoPresti, S. T.; Chaudhary, N.; Sehrawat, A.; Muramatsu, H.; Alameh, M. G.; Pardi, N.; Weissman, D. et al. Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer. Sci. Adv. 2023, 9, eade1444.

    CAS  Google Scholar 

  49. Li, B. W.; Manan, R. S.; Liang, S. Q.; Gordon, A.; Jiang, A.; Varley, A.; Gao, G. P.; Langer, R.; Xue, W.; Anderson, D. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol., in press, DOI: https://doi.org/10.1038/s41587-023-01679-x.

  50. Fornaguera, C.; Castells-Sala, C.; Lázaro, M. A.; Cascante, A.; Borrós, S. Development of an optimized freeze-drying protocol for OM-PBAE nucleic acid polyplexes. Int. J. Pharm. 2019, 569, 118612.

    CAS  Google Scholar 

  51. Boussif, O.; Lezoualc’h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301.

    CAS  Google Scholar 

  52. Ke, X. Y.; Shelton, L.; Hu, Y. Z.; Zhu, Y. N.; Chow, E.; Tang, H. Y.; Santos, J. L.; Mao, H. Q. Surface-functionalized PEGylated nanoparticles deliver messenger RNA to pulmonary immune cells. ACS Appl. Mater. Interfaces 2020, 12, 35835–35844.

    CAS  Google Scholar 

  53. Vaughan, H. J.; Zamboni, C. A. G.; Hassan, L. F.; Radant, N. P.; Jacob, D.; Mease, R. C.; Minn, I.; Tzeng, S. Y.; Gabrielson, K. L.; Bhardwaj, P. et al. Polymeric nanoparticles for dual-targeted theranostic gene delivery to hepatocellular carcinoma. Sci. Adv. 2022, 8, eabo6406.

    CAS  Google Scholar 

  54. Liu, S.; Wang, X.; Yu, X. L.; Cheng, Q.; Johnson, L. T.; Chatterjee, S.; Zhang, D.; Lee, S. M.; Sun, Y. H.; Lin, T. C. et al. Zwitterionic phospholipidation of cationic polymers facilitates systemic mRNA delivery to spleen and lymph nodes. J. Am. Chem. Soc. 2021, 143, 21321–21330.

    CAS  Google Scholar 

  55. Convertine, A. J.; Diab, C.; Prieve, M.; Paschal, A.; Hoffman, A. S.; Johnson, P. H.; Stayton, P. S. pH-responsive polymeric micelle carriers for siRNA drugs. Biomaoromeleceles 2010, 11, 2904–2911.

    CAS  Google Scholar 

  56. Jacobson, M. E.; Wang-Bishop, L.; Becker, K. W.; Wilson, J. T. Delivery of 5′-triphosphate RNA with endosomolytic nanoparticles potently activates RIG-I to improve cancer immunotherapy. Biomater. Sci. 2019, 7, 547–559.

    CAS  Google Scholar 

  57. Kheraldine, H.; Rachid, O.; Habib, A. M.; Al Moustafa, A. E.; Benter, I. F.; Akhtar, S. Emerging innate biological properties of nano-drug delivery systems: A focus on PAMAM dendrimers and their clinical potential. Adv. Drug Deliv. Rev. 2021, 178, 113908.

    CAS  Google Scholar 

  58. Biswas, S.; Deshpande, P. P.; Navarro, G.; Dodwadkar, N. S.; Torchilin, V. P. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery. Biomaterials 2013, 34, 1289–1301.

    CAS  Google Scholar 

  59. Verminnen, K.; Beeckman, D. S. A.; Sanders, N. N.; De Smedt, S.; Vanrompay, D. C. G. Vaccination of turkeys against Chlamydophila psittaci through optimised DNA formulation and administration. Vaccine 2010, 28, 3095–3105.

    CAS  Google Scholar 

  60. Bee, S. L.; Jørgensen, J. A. L.; Longva, A. S.; Lavelle, T.; Sæbøe-Larssen, S.; Hovig, E. Light-controlled modulation of gene expression using polyamidoamine formulations. Nucleic Acid Ther. 2013, 23, 160–165.

    Google Scholar 

  61. Deshayes, S.; Cabral, H.; Ishii, T.; Miura, Y.; Kobayashi, S.; Yamashita, T.; Matsumoto, A.; Miyahara, Y.; Nishiyama, N.; Kataoka, K. Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J. Am. Chem. Soc. 2013, 135, 15501–15507.

    CAS  Google Scholar 

  62. Oyewumi, M. O.; Yokel, R. A.; Jay, M.; Coakley, T.; Mumper, R. J. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J. Control. Release 2004, 95, 613–626.

    CAS  Google Scholar 

  63. Xiong, X. B.; Lavasanifar, A. Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS Nano 2011, 5, 5202–5213.

    CAS  Google Scholar 

  64. Xue, B.; Kozlovskaya, V.; Sherwani, M. A.; Ratnayaka, S.; Habib, S.; Anderson, T.; Manuvakhova, M.; Klampfer, L.; Yusuf, N.; Kharlampieva, E. Peptide-functionalized hydrogel cubes for active tumor cell targeting. Biomacromolecules 2018, 19, 4084–4097.

    CAS  Google Scholar 

  65. Mi, P.; Cabral, H.; Kataoka, K. Ligand-installed nanocarriers toward precision therapy. Adv. Mater. 2020, 32, 1902604.

    CAS  Google Scholar 

  66. Rotolo, L.; Vanover, D.; Bruno, N. C.; Peck, H. E.; Zurla, C.; Murray, J.; Noel, R. K.; O’Farrell, L.; Arainga, M.; Orr-Burks, N. et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat. Mater. 2023, 22, 369–379.

    CAS  Google Scholar 

  67. Go, Y. K.; Leal, C. Polymer-lipid hybrid materials. Chem. Rev. 2021, 121, 13996–14030.

    CAS  Google Scholar 

  68. Lin, Y. X.; Wang, Y.; Ding, J. X.; Jiang, A. P.; Wang, J.; Yu, M.; Blake, S.; Liu, S. S.; Bieberich, C. J.; Farokhzad, O. C. et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Sci. Transl. Med. 2021, 13, eaba9772.

    CAS  Google Scholar 

  69. Li, Z. Y.; Zhang, X. Q.; Ho, W.; Bai, X.; Jaijyan, D. K.; Li, F. Q.; Kumar, R.; Kolloli, A.; Subbian, S.; Zhu, H. et al. Lipid-polymer hybrid “particle-in-particle” nanostructure gene delivery platform explored for lyophilizable DNA and mRNA COVID-19 vaccines. Adv. Funct. Mater. 2022, 32, 2204462.

    CAS  Google Scholar 

  70. Kowalski, P. S.; Rudra, A.; Miao, L.; Anderson, D. G. Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Mol. Ther. 2019, 27, 710–728.

    CAS  Google Scholar 

  71. Stephenson, M. L.; Zamecnik, P. C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. USA 1978, 75, 285–288.

    CAS  Google Scholar 

  72. Dhuri, K.; Bechtold, C.; Quijano, E.; Pham, H.; Gupta, A.; Vikram, A.; Bahal, R. Antisense oligonucleotides: An emerging area in drug discovery and development. J. Clin. Med. 2020, 9, 2004.

    CAS  Google Scholar 

  73. Quemener, A. M.; Bachelot, L.; Forestier, A.; Donnou-Fournet, E.; Gilot, D.; Galibert, M. D. The powerful world of antisense oligonucleotides: From bench to bedside. WIREs RNA 2020, 11, e1594.

    Google Scholar 

  74. Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 2019, 70, 307–321.

    CAS  Google Scholar 

  75. Li, Y. Q.; Chen, Y. T.; Li, J. J.; Zhang, Z. Q.; Huang, C. M.; Lian, G. D.; Yang, K. G.; Chen, S. J.; Lin, Y.; Wang, L. Y. et al. Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy. Cancer Sci. 2017, 108, 1493–1503.

    CAS  Google Scholar 

  76. Sun, Y.; Cai, M. X.; Zhong, J. Y.; Yang, L.; Xiao, J.; Jin, F. J.; Xue, H.; Liu, X. N.; Liu, H. S.; Zhang, Y. B. et al. The long noncoding RNA lnc-ob1 facilitates bone formation by upregulating Osterix in osteoblasts. Nat. Metab. 2019, 1, 485–496.

    CAS  Google Scholar 

  77. Migliorati, J. M.; Liu, S. N.; Liu, A. N.; Gogate, A.; Nair, S.; Bahal, R.; Rasmussen, T. P.; Manautou, J. E.; Zhong, X. B. Absorption, distribution, metabolism, and excretion of US food and drug administration-approved antisense oligonucleotide drugs. Drug Metab. Dispos. 2022, 50, 888–897.

    CAS  Google Scholar 

  78. Crooke, S. T.; Liang, X. H.; Crooke, R. M.; Baker, B. F.; Geary, R. S. Antisense drug discovery and development technology considered in a pharmacological context. Biochem. Pharmacol. 2021, 189, 114196.

    CAS  Google Scholar 

  79. Reilley, M. J.; McCoon, P.; Cook, C.; Lyne, P.; Kurzrock, R.; Kim, Y.; Woessner, R.; Younes, A.; Nemunaitis, J.; Fowler, N. et al. STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: Results of a phase 1b trial. J. Immunother. Cancer 2018, 6, 119.

    Google Scholar 

  80. Odate, S.; Veschi, V.; Yan, S.; Lam, N.; Woessner, R.; Thiele, C. J. Inhibition of STAT3 with the generation 2.5 antisense oligonucleotide, AZD9150, decreases neuroblastoma tumorigenicity and increases chemosensitivity. Clin. Cancer Res. 2017, 23, 1771–1784.

    CAS  Google Scholar 

  81. Jaschinski, F.; Rothhammer, T.; Jachimczak, P.; Seitz, C.; Schneider, A.; Schlingensiepen, K. H. The antisense oligonucleotide trabedersen (AP 12009) for the targeted inhibition of TGF-β2. Curr. Pharm. Biotechnol. 2011, 12, 2203–2013.

    CAS  Google Scholar 

  82. Chi, K. N.; Higano, C. S.; Blumenstein, B.; Ferrero, J. M.; Reeves, J.; Feyerabend, S.; Gravis, G.; Merseburger, A. S.; Stenzl, A.; Bergman, A. M. et al. Custirsen in combination with docetaxel and prednisone for patients with metastatic castration-resistant prostate cancer (SYNERGY trial): A phase 3, multicentre, open-label, randomised trial. Lancet Oncol. 2017, 18, 473–485.

    CAS  Google Scholar 

  83. Rosenberg, J. E.; Hahn, N. M.; Regan, M. M.; Werner, L.; Alva, A.; George, S.; Picus, J.; Alter, R.; Balar, A.; Hoffman-Censits, J. et al. Apatorsen plus docetaxel versus docetaxel alone in platinum-resistant metastatic urothelial carcinoma (Borealis-2). Br. J. Cancer 2019, 118, 1434–1441.

    Google Scholar 

  84. Harada, T.; Matsumoto, S.; Hirota, S.; Kimura, H.; Fujii, S.; Kasahara, Y.; Gon, H.; Yoshida, T.; Itoh, T.; Haraguchi, N. et al. Chemically modified antisense oligonucleotide against ARL4C inhibits primary and metastatic liver tumor growth. Mol. Cancer Ther. 2019, 18, 602–612.

    CAS  Google Scholar 

  85. Jiang, M. C.; Ni, J. J.; Cui, W. Y.; Wang, B. Y.; Zhuo, W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am. J. Cancer Res. 2019, 9, 1354–1366.

    CAS  Google Scholar 

  86. Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med. 2015, 21, 1253–1261.

    CAS  Google Scholar 

  87. Kara, G.; Calin, G. A.; Ozpolat, B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv. Drug Deliv. Rev. 2022, 182, 114113.

    CAS  Google Scholar 

  88. Hu, B.; Zhong, L. P.; Weng, Y. H.; Peng, L.; Huang, Y. Y.; Zhao, Y. X.; Liang, X. J. Therapeutic siRNA: State of the art. Signal Transduct. Target. Ther. 2020, 7, 101.

    Google Scholar 

  89. Subhan, M. A.; Attia, S. A.; Torchilin, V. P. Advances in siRNA delivery strategies for the treatment of MDR cancer. Life Sci. 2021, 274, 119337.

    CAS  Google Scholar 

  90. Bai, X.; Zhao, G. L.; Chen, Q. J.; Li, Z. Y.; Gao, M. Z.; Ho, W.; Xu, X. Y.; Zhang, X. Q. Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge. Sci. Adv. 2022, 8, eabn7162.

    CAS  Google Scholar 

  91. Zhou, Y. Y.; Zhu, F. Y.; Liu, Y.; Zheng, M.; Wang, Y. B.; Zhang, D. Y.; Anraku, Y.; Zou, Y.; Li, J.; Wu, H. G. et al. Blood-brain barrier-penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci. Adv. 2020, 6, eabc7031.

    CAS  Google Scholar 

  92. Lekka, E.; Hall, J. Noncoding RNAs in disease. FEBS Lett. 2019, 792, 2884–2900.

    Google Scholar 

  93. Hong, D. S.; Kang, Y. K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H. Y.; Brenner, A. J.; Park, K.; Lee, J. L.; Kim, T. Y. et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 2020, 122, 1630–1637.

    CAS  Google Scholar 

  94. Panigrahi, M.; Palmer, M. A.; Wilson, J. A. MicroRNA-122 regulation of HCV infections: Insights from studies of miR-122-independent replication. Pathogens 2022, 11, 1005.

    CAS  Google Scholar 

  95. Hinkel, R.; Penzkofer, D.; Zühlke, S.; Fischer, A.; Husada, W.; Xu, Q. F.; Baloch, E.; van Rooij, E.; Zeiher, A. M.; Kupatt, C. et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 2013, 128, 1066–1075.

    CAS  Google Scholar 

  96. Tang, J. M.; Li, X.; Cheng, T. L.; Wu, J. miR-21-5p/SMAD7 axis promotes the progress of lung cancer. Thorac Cancer 2021, 12, 2307–2313.

    CAS  Google Scholar 

  97. Zhen, C. L.; Wu, X. X.; Zhang, J.; Liu, D.; Li, G. L.; Yan, Y. B.; He, X. Z.; Miao, J. W.; Song, H. X.; Yan, Y. F. et al. Ganoderma lucidum polysaccharides attenuates pressure-overload-induced pathological cardiac hypertrophy. Front. Pharmacol. 2023, 14, 1127123.

    CAS  Google Scholar 

  98. Jiang, F. G.; Doudna, J. A. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 2017, 46, 505–529.

    CAS  Google Scholar 

  99. Zhang, H. M.; Qin, C. H.; An, C. M.; Zheng, X. W.; Wen, S. X.; Chen, W. J.; Liu, X. F.; Lv, Z. H.; Yang, P. C.; Xu, W. et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol. Cancer 2021, 20, 126.

    CAS  Google Scholar 

  100. Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821.

    CAS  Google Scholar 

  101. Westermann, L.; Neubauer, B.; Köttgen, M. Nobel Prize 2020 in Chemistry honors CRISPR: A tool for rewriting the code of life. Pflugers Arch. 2021, 473, 1–2.

    CAS  Google Scholar 

  102. Sharma, G.; Sharma, A. R.; Bhattacharya, M.; Lee, S. S.; Chakraborty, C. CRISPR-Cas9: A preclinical and clinical perspective for the treatment of human diseases. Mol. Ther. 2021, 29, 571–586.

    CAS  Google Scholar 

  103. Anzalone, A. V.; Randolph, P. B.; Davis, J. R.; Sousa, A. A.; Koblan, L. W.; Levy, J. M.; Chen, P. J.; Wilson, C.; Newby, G. A.; Raguram, A. et al. Search-and- replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157.

    CAS  Google Scholar 

  104. Chen, B. H.; Gilbert, L. A.; Cimini, B. A.; Schnitzbauer, J.; Zhang, W.; Li, G. W.; Park, J.; Blackburn, E. H.; Weissman, J. S.; Qi, L. S. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 2013, 155, 1479–1491.

    CAS  Google Scholar 

  105. Frangoul, H.; Altshuler, D.; Cappellini, M. D.; Chen, Y. S.; Domm, J.; Eustace, B. K.; Foell, J.; de la Fuente, J.; Grupp, S.; Handgretinger, R. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 2021, 384, 252–260.

    CAS  Google Scholar 

  106. Qin, R. Y.; Li, J.; Liu, X. S.; Xu, R. F.; Yang, J. B.; Wei, P. C. SpCas9-NG self-targets the sgRNA sequence in plant genome editing. Nat. Plants 2020, 6, 197–201.

    CAS  Google Scholar 

  107. Li, C.; Zong, Y.; Jin, S.; Zhu, H. C.; Lin, D. X.; Li, S. N.; Qiu, J. L.; Wang, Y. P.; Gao, C. X. SWISS: Multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds. Genome Biol. 2020, 21, 141.

    Google Scholar 

  108. Liu, L.; Li, W. B.; Li, J.; Zhao, D. D.; Li, S. W.; Jiang, G.; Wang, J.; Chen, X. X.; Bi, C. H.; Zhang, X. L. Circular guide RNA for improved stability and CRISPR-Cas9 editing efficiency in vitro and in bacteria. ACS Synth. Biol. 2023, 12, 350–359.

    CAS  Google Scholar 

  109. Locatelli, F.; Lang, P.; Li, A.; Corbacioglu, S.; de la Fuente, J.; Wall, D. A.; Liem, R.; Meisel, R.; Mapara, M. Y.; Shah, A. J. et al. Efficacy and safety of a single dose of exagamglogene autotemcel for transfusion-dependent β-thalassemia. Blood 2022, 140, 4899–4901.

    Google Scholar 

  110. Abraham, A. A.; Tisdale, J. F. Gene therapy for sickle cell disease: Moving from the bench to the bedside. Blood 2021, 138, 932–941.

    CAS  Google Scholar 

  111. Ren, J. T.; Liu, X. J.; Fang, C. Y.; Jiang, S. G.; June, C. H.; Zhao, Y. B. Multiplex genome editing to generate universal CAR T Cells resistant to PD1 inhibition. Clin. Cancer Res. 2017, 23, 2255–2266.

    CAS  Google Scholar 

  112. Mascola, J. R.; Fauci, A. S. Novel vaccine technologies for the 21st century. Nat. Rev. Immunol. 2020, 20, 87–88.

    CAS  Google Scholar 

  113. Wolff, J. A.; Malone, R. W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P. L. Direct gene transfer into mouse muscle in vivo. Science 1990, 247, 1465–1468.

    CAS  Google Scholar 

  114. Lorentzen, C. L.; Haanen, J. B.; Met, Ö.; Svane, I. M. Clinical advances and ongoing trials of mRNA vaccines for cancer treatment. Lancet Oncol. 2022, 23, e450–e458.

    CAS  Google Scholar 

  115. Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279.

    CAS  Google Scholar 

  116. Luo, M.; Wang, H.; Wang, Z. H.; Cai, H. C.; Lu, Z. G.; Li, Y.; Du, M. J.; Huang, G.; Wang, C. S.; Chen, X. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 648–654.

    CAS  Google Scholar 

  117. Li, S. X.; Luo, M.; Wang, Z. H.; Feng, Q.; Wilhelm, J.; Wang, X.; Li, W.; Wang, J.; Cholka, A.; Fu, Y. X. et al. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat. Biomed. Eng. 2021, 5, 455–466.

    CAS  Google Scholar 

  118. Zhou, K. J.; Nguyen, L. H.; Miller, J. B.; Yan, Y. F.; Kos, P.; Xiong, H.; Li, L.; Hao, J.; Minnig, J. T.; Zhu, H. et al. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model. Proc. Natl. Acad. Sci. USA 2016, 113, 520–525.

    CAS  Google Scholar 

  119. Cheng, Q.; Wei, T.; Jia, Y. M.; Farbiak, L.; Zhou, K. J.; Zhang, S. Y.; Wei, Y. L.; Zhu, H.; Siegwart, D. J. Dendrimer-based lipid nanoparticles deliver therapeutic FAH mRNA to normalize liver function and extend survival in a mouse model of hepatorenal tyrosinemia type I. Adv. Mater. 2019, 30, 1805308.

    Google Scholar 

  120. Rurik, J. G.; Tombácz, I.; Yadegari, A.; Fernandez, P. O. M.; Shewale, S. V.; Li, L.; Kimura, T.; Soliman, O. Y.; Papp, T. E.; Tam, Y. K. et al. CAR T cells produced in vivo to treat cardiac injury. Science 2022, 375, 91–96.

    CAS  Google Scholar 

  121. Segel, M.; Lash, B.; Song, J. W.; Ladha, A.; Liu, C. C.; Jin, X.; Mekhedov, S. L.; Macrae, R. K.; Koonin, E. V.; Zhang, F. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 2021, 373, 882–889.

    CAS  Google Scholar 

  122. Kutzler, M. A.; Weiner, D. B. DNA vaccines: Ready for prime time. Nat. Rev. Genet. 2008, 9, 776–788.

    CAS  Google Scholar 

  123. Huang, X. G.; Kong, N.; Zhang, X. C.; Cao, Y. H.; Langer, R.; Tao, W. The landscape of mRNA nanomedicine. Nat. Med. 2022, 28, 2273–2287.

    CAS  Google Scholar 

  124. Andries, O.; Mc Cafferty, S.; De Smedt, S. C.; Weiss, R.; Sanders, N. N.; Kitada, T. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release 2015, 217, 337–344.

    CAS  Google Scholar 

  125. Barbier, A. J.; Jiang, A. Y.; Zhang, P.; Wooster, R.; Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 2022, 40, 840–854.

    CAS  Google Scholar 

  126. Chaudhary, N.; Weissman, D.; Whitehead, K. A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. DrugDiscov. 2021, 20, 817–838.

    CAS  Google Scholar 

  127. Yu, M. Z.; Wang, N. N.; Zhu, J. Q.; Lin, Y. X. The clinical progress and challenges of mRNA vaccines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023, 15, e1894.

    CAS  Google Scholar 

  128. Zhang, H. X.; Zhang, Y.; Yin, H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Mol. Ther. 2019, 27, 735–746.

    CAS  Google Scholar 

  129. Kim, M. Y.; Jeong, S. In vitro selection of RNA aptamer and specific targeting of ErbB2 in breast cancer cells. Nucleic Acid Ther. 2011, 21, 173–178.

    CAS  Google Scholar 

  130. Tan, W. H.; Wang, H.; Chen, Y.; Zhang, X. B.; Zhu, H. Z.; Yang, C. Y.; Yang, R. H.; Liu, C. Molecular aptamers for drug delivery. Trends Biotechnol. 2011, 29, 634–640.

    CAS  Google Scholar 

  131. Camorani, S.; d’Argenio, A.; Agnello, L.; Nilo, R.; Zannetti, A.; Ibarra, L. E.; Fedele, M.; Cerchia, L. Optimization of short RNA aptamers for TNBC cell targeting. Int. J. Mol. Sci. 2022, 23, 3511.

    CAS  Google Scholar 

  132. Guo, P. X.; Coban, O.; Snead, N. M.; Trebley, J.; Hoeprich, S.; Guo, S. C.; Shu, Y. Engineering RNA for targeted siRNA delivery and medical application. Adv. Drug Deliv. Rev. 2010, 62, 650–666.

    CAS  Google Scholar 

  133. Zhu, Y.; Hart, G. W. Dual-specificity RNA aptamers enable manipulation of target-specific O-GlcNAcylation and unveil functions of O-GlcNAc on β-catenin. Cell 2023, 186, 428–445.e27.

    CAS  Google Scholar 

  134. Kim, J.; Piao, Y. Z.; Hyeon, T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 2009, 38, 372–390.

    CAS  Google Scholar 

  135. Röthlisberger, P.; Gasse, C.; Hollenstein, M. Nucleic acid aptamers: Emerging applications in medical imaging, nanotechnology, neurosciences, and drug delivery. Int. J. Mol. Sci. 2017, 18, 2430.

    Google Scholar 

  136. Willner, I.; Willner, B. Biomolecule-based nanomaterials and nanostructures. Nano Lett. 2010, 10, 3805–3815.

    CAS  Google Scholar 

  137. Jones, C. H.; Chen, C. K.; Ravikrishnan, A.; Rane, S.; Pfeifer, B. A. Overcoming nonviral gene delivery barriers: Perspective and future. Mol. Pharmaceetics 2013, 10, 4082–4098.

    CAS  Google Scholar 

  138. Popa, S. J.; Stewart, S. E. Socially distanced intercellular communication: Mechanisms for extracellular vesicle cargo delivery. In New Frontiers: Extracellular Vesicles. Mathivanan, S.; Fonseka, P.; Nedeva, C.; Atukorala, I., Eds.; Springer: Cham, 2021; pp 179–209.

    Google Scholar 

  139. Nimjee, S. M.; White, R. R.; Becker, R. C.; Sullenger, B. A. Aptamers as therapeutics. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 61–79.

    CAS  Google Scholar 

  140. Zhou, C.; He, X.; Tong, C.; Li, H. H.; Xie, C. F.; Wu, Y. D.; Wang, L. L.; Yan, X. H.; Luo, D. Y.; Tang, Y. P. et al. Cancer-associated adipocytes promote the invasion and metastasis in breast cancer through LIF/CXCLs positive feedback loop. Int. J. Biol. Sci. 2022, 18, 1363–1380.

    CAS  Google Scholar 

  141. Steurer, M.; Montillo, M.; Scarfô, L.; Mauro, F. R.; Andel, J.; Wildner, S.; Trentin, L.; Janssens, A.; Burgstaller, S.; Frömming, A. et al. Olaptesed pegol (NOX-A12) with bendamustine and rituximab: A phase IIa study in patients with relapsed/refractory chronic lymphocytic leukemia. Haemolologica 2019, 104, 2053–2060.

    CAS  Google Scholar 

  142. Marasca, R.; Maffei, R. NOX-A12: Mobilizing CLL away from home. Blood 2014, 123, 952–953.

    CAS  Google Scholar 

  143. Bie, L. H.; Wang, Y.; Jiang, F. Z.; Xiao, Z.; Zhang, L. J.; Wang, J. Insights into the binding mode of AS1411 aptamer to nucleolin. Front. Mol. Biosci. 2022, 9, 1025313.

    CAS  Google Scholar 

  144. Rosenberg, J. E.; Bambury, R. M.; van Allen, E. M.; Drabkin, H. A.; Lara, P. N. Jr.; Harzstark, A. L.; Wagle, N.; Figlin, R. A.; Smith, G. W.; Garraway, L. A. et al. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest. New Drugs 2014, 32, 178–187.

    CAS  Google Scholar 

  145. Taneja, V.; Goel, M.; Shankar, U.; Kumar, A.; Khilnani, G. C.; Prasad, H. K.; Prasad, G. B. K. S.; Gupta, U. D.; Sharma, T. K. An aptamer linked immobilized sorbent assay (ALISA) to detect circulatory IFN-α, an inflammatory protein among tuberculosis patients. ACS Comb. Sci. 2020, 22, 656–666.

    CAS  Google Scholar 

  146. Gruenke, P. R.; Aneja, R.; Welbourn, S.; Ukah, O. B.; Sarafianos, S. G.; Burke, D. H.; Lange, M. J. Selection and identification of an RNA aptamer that specifically binds the HIV-1 capsid lattice and inhibits viral replication. Nucleic Acids Res. 2022, 50, 1701–1717.

    CAS  Google Scholar 

  147. Garred, P.; Tenner, A. J.; Mollnes, T. E. Therapeutic targeting of the complement system: From rare diseases to pandemics. Pharmacol. Rev. 2021, 73, 792–827.

    CAS  Google Scholar 

  148. Diaz, J. A.; Wrobleski, S. K.; Alvarado, C. M.; Hawley, A. E.; Doornbos, N. K.; Lester, P. A.; Lowe, S. E.; Gabriel, J. E.; Roelofs, K. J.; Henke, P. K. et al. P-selectin inhibition therapeutically promotes thrombus resolution and prevents vein wall fibrosis better than enoxaparin and an inhibitor to von Willebrand factor. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 829–837.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32371458), the Key Research and Development Programs of the Ministry of Science and Technology (No. 2022YFA1205700), and the Basic Research Cooperation Special Foundation of Beijing-Tianjin-Hebei (Nos. H2022205047, 22JCZXJC00060, and E3B33911DF). Y.-X. L. thanks the start-up funding from the National Center for Nanoscience and Technology and Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Wang or Yao-Xin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, LJ., Ji, ZH., Xu, MX. et al. RNA-based nanomedicines and their clinical applications. Nano Res. 16, 13182–13204 (2023). https://doi.org/10.1007/s12274-023-6238-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6238-5

Keywords

Navigation