Skip to main content
Log in

Cu/Mo2C synthesized through Anderson-type polyoxometalates modulate interfacial water structure to achieve hydrogen evolution at high current density

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of efficient non-precious metal catalysts is important for the large-scale application of alkaline hydrogen evolution reaction (HER). Here, we synthesized a composite catalyst of Cu and Mo2C (Cu/Mo2C) using Anderson-type polyoxometalates (POMs) synthesized by the facile soaking method as precursors. The electronic interaction between Cu and Mo2C drives the positive charge of Cu, alleviating the strong adsorption of hydrogen at the Mo site by modulating the d-band center of Mo2C. By studying the interfacial water structure using in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), we determined that the positively charged Cu crystals have the function of activating water molecules and optimizing the interfacial water structure. The interfacial water of Cu/Mo2C contains a large amount of free water, which could facilitate the transport of reaction intermediates. Due to activated water molecules and optimized interfacial water structure and hydrogen adsorption energy, the overpotential of Cu/Mo2C is 24 mV at a current density of 10 mA·cm−2 and 178 mV at a current density of 1000 mA·cm−2. This work improves catalyst performance in terms of interfacial water structure optimization and deepens the understanding of water-mediated catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.

    Article  CAS  Google Scholar 

  2. Wu, F.; Yang, R.; Lu, S. S.; Du, W.; Zhang, B.; Shi, Y. M. Unveiling partial transformation and activity origin of sulfur vacancies for hydrogen evolution. ACS Energy Lett. 2022, 7, 4198–4203.

    Article  CAS  Google Scholar 

  3. Liu, F.; Shi, C. X.; Guo, X. L.; He, Z. X.; Pan, L.; Huang, Z. F.; Zhang, X. W.; Zou, J. J. Rational design of better hydrogen evolution electrocatalysts for water splitting: A review. Adv. Sci. 2022, 9, 2200307.

    Article  CAS  Google Scholar 

  4. Lao, M. M.; Li, P.; Jiang, Y. Z.; Pan, H. G.; Dou, S. X.; Sun, W. P. From fundamentals and theories to heterostructured electrocatalyst design: An in-depth understanding of alkaline hydrogen evolution reaction. Nano Energy 2022, 98, 107231.

    Article  CAS  Google Scholar 

  5. Bhunia, K.; Chandra, M.; Kumar Sharma, S.; Pradhan, D.; Kim, S. J. A critical review on transition metal phosphide based catalyst for electrochemical hydrogen evolution reaction: Gibbs free energy, composition, stability, and true identity of active site. Coord. Chem. Rev. 2023, 478, 214956.

    Article  CAS  Google Scholar 

  6. Li, C. Y.; Wang, Z. J.; Liu, M. D.; Wang, E. Z.; Wang, B. L.; Xu, L. L.; Jiang, K. L.; Fan, S. S.; Sun, Y. H.; Li, J. et al. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat. Commun. 2022, 13, 3338.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Chen, Y. F.; Meng, G.; Yang, T.; Chen, C.; Chang, Z. W.; Kong, F. T.; Tian, H.; Cui, X. Z.; Hou, X. M.; Shi, J. L. Interfacial engineering of Co-doped 1T-MoS2 coupled with V2C MXene for efficient electrocatalytic hydrogen evolution. Chem. Eng. J. 2022, 450, 138157.

    Article  CAS  Google Scholar 

  8. Jiao, J. Q.; Zhang, N. N.; Zhang, C.; Sun, N.; Pan, Y.; Chen, C.; Li, J.; Tan, M. J.; Cui, R. X.; Shi, Z. L. et al. Doping ruthenium into metal matrix for promoted pH-universal hydrogen evolution. Adv. Sci. 2022, 9, 2200010.

    Article  CAS  Google Scholar 

  9. Dan, Z. X.; Liang, W. L.; Gong, X. Y.; Lin, X. Y.; Zhang, W. Q.; Le, Z. C.; Xie, F. Y.; Chen, J.; Yang, M. Z.; Wang, N. et al. Substitutional doping engineering toward W2N nanorod for hydrogen evolution reaction at high current density. ACS Mater. Lett. 2022, 4, 1374–1380.

    Article  CAS  Google Scholar 

  10. Sun, K. A.; Wu, X. Y.; Zhuang, Z. W.; Liu, L. Y.; Fang, J. J.; Zeng, L. Y.; Ma, J. G.; Liu, S. J.; Li, J. Z.; Dai, R. Y. et al. Interfacial water engineering boosts neutral water reduction. Nat. Commun. 2022, 13, 6260.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S. N.; Zheng, J. X.; Yang, Z. L. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 2021, 600, 81–85.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Wen, Q. L.; Duan, J. Y.; Wang, W. B.; Huang, D. J.; Liu, Y. W.; Shi, Y. L.; Fang, J. K.; Nie, A. M.; Li, H. Q.; Zhai, T. Y. Engineering a local free water enriched microenvironment for surpassing platinum hydrogen evolution activity. Angew. Chem., Int. Ed. 2022, 61, e202206077.

    Article  CAS  Google Scholar 

  13. Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2017, 2, 17031.

    Article  ADS  CAS  Google Scholar 

  14. Wang, M. M.; Sun, K. A.; Mi, W. L.; Feng, C.; Guan, Z. K.; Liu, Y. Q.; Pan, Y. Interfacial water activation by single-atom Co-N3 sites coupled with encapsulated Co nanocrystals for accelerating electrocatalytic hydrogen evolution. ACS Catal. 2022, 12, 10771–10780.

    Article  Google Scholar 

  15. Liu, E. S.; Jiao, L.; Li, J. K.; Stracensky, T.; Sun, Q.; Mukerjee, S.; Jia, Q. Y. Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy Environ. Sci. 2020, 13, 3064–3074.

    Article  CAS  Google Scholar 

  16. Ma, F. X.; Wu, H. B.; Xia, B. Y.; Xu, C. Y.; Lou, X. W. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 15395–15399.

    Article  CAS  Google Scholar 

  17. Jia, J.; Xiong, T. L.; Zhao, L. L.; Wang, F. L.; Liu, H.; Hu, R. Z.; Zhou, J.; Zhou, W. J.; Chen, S. W. Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 2017, 11, 12509–12518.

    Article  CAS  PubMed  Google Scholar 

  18. Ma, Y. F.; Chen, M.; Geng, H. B.; Dong, H. F.; Wu, P.; Li, X. M.; Guan, G. Q.; Wang, T. J. Synergistically tuning electronic structure of porous β-Mo2C spheres by Co doping and Mo-vacancies defect engineering for optimizing hydrogen evolution reaction activity. Adv. Funct. Mater. 2020, 30, 2000561.

    Article  CAS  Google Scholar 

  19. Hu, M. H.; Chen, H. Y.; Liu, B. C.; Xu, X.; Cao, B.; Jing, P.; Zhang, J. J.; Gao, R.; Zhang, J. Coupling ceria with dual-phased molybdenum carbides for efficient and stable hydrogen evolution electrocatalysis at large-current-density in freshwater and seawater. Appl. Catal. B: Environ. 2022, 317, 121774.

    Article  CAS  Google Scholar 

  20. Li, J. C.; Wang, X. Y.; Wang, Y.; Zhao, Y. C.; Ma, C. H.; Zhan, T. Z.; Chen, L. H.; Zhao, C. Q.; Lan, J.; Xiao, Z. C. et al. N-doped Mo2C nanoparticles prepared from organic-derived polyoxomolybdates for efficient electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2022, 47, 28915–28923.

    Article  CAS  Google Scholar 

  21. Yu, F. Y.; Gao, Y.; Lang, Z. L.; Ma, Y. Y.; Yin, L. Y.; Du, J.; Tan, H. Q.; Wang, Y. H.; Li, Y. G. Electrocatalytic performance of ultrasmall Mo2C affected by different transition metal dopants in hydrogen evolution reaction. Nanoscale 2018, 10, 6080–6087.

    Article  CAS  PubMed  Google Scholar 

  22. Wu, P. F.; Wang, Y.; Huang, B.; Xiao, Z. C. Anderson-type polyoxometalates: From structures to functions. Nanoscale 2021, 13, 7119–7133.

    Article  CAS  PubMed  Google Scholar 

  23. Shah, A. H.; Zhang, Z. S.; Huang, Z. H.; Wang, S. B.; Zhong, G. Y.; Wan, C. Z.; Alexandrova, A. N.; Huang, Y.; Duan, X. F. The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nat. Catal. 2022, 5, 923–933.

    Article  CAS  Google Scholar 

  24. McCrum, I. T.; Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 2020, 5, 891–899.

    Article  ADS  CAS  Google Scholar 

  25. Lee, U.; Joo, H. C.; Kwon, J. S. Tetraammonium hexahydrogen hexamolybdonickelate(II) tetrahydrate, (NH4)4[H6NiMo6O24]·4H2O. Acta Crystall. Sec. E 2002, 58, i6–i8.

    Article  CAS  Google Scholar 

  26. Mazanik, A. V.; Kulak, A. I.; Bondarenko, E. A.; Korolik, O. V.; Mahon, N. S.; Streltsov, E. A. Strong room temperature exciton photoluminescence in electrochemically deposited Cu2O films. J. Lumin. 2022, 251, 119227.

    Article  CAS  Google Scholar 

  27. Luo, Y. T.; Tang, L.; Khan, U.; Yu, Q. M.; Cheng, H. M.; Zou, X. L.; Liu, B. L. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 2019, 10, 269.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Xu, Y. L.; Wang, C.; Huang, Y. H.; Fu, J. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80, 105545.

    Article  CAS  Google Scholar 

  29. Zhang, Q.; Xiao, W.; Guo, W. H.; Yang, Y. X.; Lei, J. L.; Luo, H. Q.; Li, N. B. Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self-supporting electrode for effective overall water splitting. Adv. Funct. Mater. 2021, 31, 2102117.

    Article  CAS  Google Scholar 

  30. Feng, J. X.; Wu, J. Q.; Tong, Y. X.; Li, G. R. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J. Am. Chem. Soc. 2018, 140, 610–617.

    Article  CAS  PubMed  Google Scholar 

  31. Wu, L. B.; Zhang, F. H.; Song, S. W.; Ning, M. H.; Zhu, Q.; Zhou, J. Q.; Gao, G. H.; Chen, Z. Y.; Zhou, Q. C.; Xing, X. X. et al. Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanoparticle-structured Ni-MoN catalyst with fast water-dissociation kinetics. Adv. Mater. 2022, 34, 2201774.

    Article  CAS  Google Scholar 

  32. Zhu, S. Q.; Qin, X. P.; Yao, Y.; Shao, M. H. pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 2020, 142, 8748–8754.

    Article  PubMed  Google Scholar 

  33. Dong, Z. H.; Lin, F.; Yao, Y. H.; Jiao, L. F. Crystalline Ni(OH)2/amorphous NiMoOx mixed-catalyst with Pt-like performance for hydrogen production. Adv. Energy Mater. 2019, 9, 1902703.

    Article  CAS  Google Scholar 

  34. Le, J. B.; Fan, Q. Y.; Perez-Martinez, L.; Cuesta, A.; Cheng, J. Theoretical insight into the vibrational spectra of metal-water interfaces from density functional theory based molecular dynamics. Phys. Chem. Chem. Phys. 2018, 20, 11554–11558.

    Article  CAS  PubMed  Google Scholar 

  35. Shen, L. F.; Lu, B. A.; Li, Y. Y.; Liu, J.; Huang-Fu, Z. C.; Peng, H.; Ye, J. Y.; Qu, X. M.; Zhang, J. M.; Li, G. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22397–22402.

    Article  CAS  Google Scholar 

  36. Li, C. Y.; Le, J. B.; Wang, Y. H.; Chen, S.; Yang, Z. L.; Li, J. F.; Cheng, J.; Tian, Z. Q. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 2019, 18, 697–701.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Gao, Q. S.; Zhang, W. B.; Shi, Z. P.; Yang, L. C.; Tang, Y. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater. 2019, 31, 1802880.

    Article  Google Scholar 

  38. Zhao, L. L.; Yuan, H. F.; Sun, D. H.; Jia, J.; Yu, J. Y.; Zhang, X. L.; Liu, X. Y.; Liu, H.; Zhou, W. J. Active facet regulation of highly aligned molybdenum carbide porous octahedrons via crystal engineering for hydrogen evolution reaction. Nano Energy 2020, 77, 105056.

    Article  CAS  Google Scholar 

  39. Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Nos. 52376060 and 51976081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fen Qiao or Haitao Li.

Electronic Supplementary Material

Supplementary material, approximately 118 KB.

12274_2023_6237_MOESM2_ESM.pdf

Cu/Mo2C synthesized through Anderson-type polyoxometalates modulate interfacial water structure to achieve hydrogen evolution at high current density

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, D., Qiao, F., Zhou, Y. et al. Cu/Mo2C synthesized through Anderson-type polyoxometalates modulate interfacial water structure to achieve hydrogen evolution at high current density. Nano Res. 17, 2546–2554 (2024). https://doi.org/10.1007/s12274-023-6237-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6237-6

Keywords

Navigation