Skip to main content
Log in

Assembly of a core–shell MOF with stability into Polyacrylamide hydrogel for boosting extraction of uranium from seawater

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Efficient and selective extraction of uranium (U(VI)) from seawater is essential for sustainable nuclear power production. This study reports a novel adsorbent zeolitic imidazolate framework (ZIF)-67@SiO2-A/polyacrylamide (PAM) which was synthesized by grafting the core–shell metal–organic frameworks (MOFs)-based nanostructures coated with the 3-aminopropyl triethoxysilane (APTES) functionalized SiO2 (SiO2-A) onto PAM hydrogel. The SiO2 shell was grown on the surface of MOF, which improved the acid-base resistance of MOF. The introduction of ZIF-67@SiO2-A enhances the specific surface area and adsorption efficiency of the PAM. The ZIF-67@SiO2-A/PAM shows remarkable adsorption capacity, fast adsorption kinetics, and good reusability for uranium. It has excellent adsorption property (6.33 mg·g−1, 30 d) in natural seawater. The X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), energy dispersive spectroscopy (EDS) mappings, and density functional theory reveal that the coordination by N and O in ZIF-67@SiO2-A/PAM with uranium is the main mechanism of uranium adsorption. Thus, ZIF-67@SiO2-A/PAM has great potential to capture uranium from natural seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mei, D. C.; Liu, L. J.; Yan, B. Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water. Coord. Chem. Rev. 2023, 475, 214917.

    Article  CAS  Google Scholar 

  2. Ma, L. L.; Ye, H.; Liu, L.; Wu, M. B.; Yao, J. M. Polypropylene membranes with high adsorption capacity and anti-adhesion properties achieved by hydrophobic interactions and hydrogen bonded self-assembly for uranium extraction from seawater. Chem. Eng. J. 2023, 451, 138696.

    Article  CAS  Google Scholar 

  3. Cai, Y. W.; Zhang, Y. F.; Lv, Z. M.; Zhang, S.; Gao, F. X.; Fang, M.; Kong, M. G.; Liu, P. S.; Tan, X. L.; Hu, B. W. et al. Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process. Appl. Catal. B: Environ. 2022, 310, 121343.

    Article  CAS  Google Scholar 

  4. Wang, W. G.; Hong, G. H.; Zhang, Y. Q.; Yang, X. B.; Hu, N. M.; Zhang, J. L.; Sorokin, P.; Shao, L. Designing an energy-efficient multi-stage selective electrodialysis process based on high-performance materials for lithium extraction. J. Membr. Sci. 2023, 675, 121534.

    Article  CAS  Google Scholar 

  5. Li, H.; Li, L. Y.; Wen, J.; Ye, G.; Chen, J.; Wang, X. L. Introducing self-assembly effect in adsorption process for efficient uranium extraction by zwitterion highly-functionalized fibers. Chem. Eng. J. 2023, 456, 140935.

    Article  CAS  Google Scholar 

  6. Liu, H. H.; Lei, J.; Chen, J. L.; Li, Y.; Gong, C. Y.; Yang, S. J.; Zheng, Y. M.; Lu, N.; Liu, Y.; Zhu, W. K. et al. Hydrogen-incorporated vanadium dioxide nanosheets enable efficient uranium confinement and photoreduction. Nano Res. 2022, 15, 2943–2951.

    Article  ADS  CAS  Google Scholar 

  7. Liu, X. L.; Xie, Y. H.; Hao, M. J.; Chen, Z. S.; Yang, H.; Waterhouse, G. I. N.; Ma, S. Q.; Wang, X. K. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized in N-C catalyst. Adv. Sci. 2022, 9, 2201735.

    Article  CAS  Google Scholar 

  8. Chen, M. W.; Liu, T.; Zhang, X. B.; Zhang, R. Q.; Tang, S.; Yuan, Y. H.; Xie, Z. J.; Liu, Y. J.; Wang, H.; Fedorovich, K. V. et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv. Funct. Mater. 2021, 31, 2100106.

    Article  CAS  Google Scholar 

  9. Yuan, Y.; Meng, Q. H.; Faheem, M.; Yang, Y. J.; Li, Z. N.; Wang, Z. Y.; Deng, D.; Sun, F. X.; He, H. M.; Huang, Y. H. et al. A molecular coordination template strategy for designing selective porous aromatic framework materials for uranyl capture. ACS Cent. Sci. 2019, 5, 1432–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma, L.; Huang, C.; Yao, Y. Y.; Fu, M. T.; Han, F.; Li, Q. N.; Wu, M. H.; Zhang, H. J.; Xu, L.; Ma, H. J. Self-assembled MOF microspheres with hierarchical porous structure for efficient uranium adsorption. Sep. Purif. Technol. 2023, 314, 123526.

    Article  CAS  Google Scholar 

  11. Liu, T.; Zhang, R. Q.; Chen, M. W.; Liu, Y. J.; Xie, Z. J.; Tang, S.; Yuan, Y. H.; Wang, N. Vertically aligned polyamidoxime/graphene oxide hybrid sheets’ membrane for ultrafast and selective extraction of uranium from seawater. Adv. Funct. Mater. 2022, 32, 2111049.

    Article  CAS  Google Scholar 

  12. Liu, T.; Xie, Z. J.; Chen, M. W.; Tang, S.; Liu, Y. J.; Wang, J.; Zhang, R. Q.; Wang, H.; Guo, X.; Gu, A. P. et al. Mussel-inspired dual-crosslinked polyamidoxime photothermal hydrogel with enhanced mechanical strength for highly efficient and selective uranium extraction from seawater. Chem. Eng. J. 2022, 430, 133182.

    Article  CAS  Google Scholar 

  13. Li, H.; Sun, J.; Qin, S. L.; Song, Y. C.; Liu, Z.; Yang, P. P.; Li, S. W.; Liu, C. T.; Shen, C. Y. Zwitterion functionalized graphene oxide/polyacrylamide/polyacrylic acid hydrogels with photothermal conversion and antibacterial properties for highly efficient uranium extraction from seawater. Adv. Funct. Mater. 2023, 33, 2301773.

    Article  CAS  Google Scholar 

  14. Yan, L. L.; Yang, X. B.; Li, Y. X.; Song, R.; Lin, Y.; Huang, Q. L.; Shao, L. Acid-resistant supramolecular nanofibrous hydrogel membrane with core-shell structure for highly efficient oil/water separation. J. Membr. Sci. 2023, 679, 121705.

    Article  CAS  Google Scholar 

  15. Xu, H. B.; Bai, Z. Y.; Zhang, M. L.; Wang, J.; Yan, Y. D.; Qiu, M.; Chen, J. M. Water-locking molecule-assisted fabrication of nature-inspired Mg(OH)2 for highly efficient and economical uranium capture. Dalton Trans. 2020, 49, 7535–7545.

    Article  CAS  PubMed  Google Scholar 

  16. Bai, Z. Y.; Liu, Q.; Zhang, H. S.; Liu, J. Y.; Chen, R. R.; Yu, J.; Li, R. M.; Liu, P. L.; Wang, J. Mussel-inspired anti-biofouling and robust hybrid nanocomposite hydrogel for uranium extraction from seawater. J. Hazard. Mater. 2020, 381, 120984.

    Article  CAS  PubMed  Google Scholar 

  17. Xu, H. Y.; Yu, W. J.; Pan, K.; Wang, G. F.; Zhu, P. F. Confinement and antenna effect for ultrasmall Y2O3:Eu3+ nanocrystals supported by MOF with enhanced near-UV light absorption thereby enhanced luminescence and excellently multifunctional applications. Nano Res. 2021, 14, 720–729.

    Article  ADS  CAS  Google Scholar 

  18. Darabi, R.; Karimi-Maleh, H. Hierarchical copper-1, 3, 5 benzenetricarboxylic acid-MOF-derived with nitrogen-doped graphene nanoribbons as a novel assembly nanocomposite for asymmetric supercapacitors. Adv. Compos. Hybrid Mater. 2023, 6, 114.

    Article  CAS  Google Scholar 

  19. Li, H.; Wang, S. Reaction: Semiconducting MOFs offer new strategy for uranium extraction from seawater. Chem 2021, 7, 279–280.

    Article  CAS  Google Scholar 

  20. Senkovska, I.; Bon, V.; Abylgazina, L.; Mendt, M.; Berger, J.; Kieslich, G.; Petkov, P.; Luiz Fiorio, J.; Joswig, J. O.; Heine, T. et al. Understanding MOF flexibility: An analysis focused on pillared layer MOFs as a model system. Angew. Chem., Int. Ed. 2023, 62, e202218076.

    Article  CAS  Google Scholar 

  21. Wen, Y. J.; Yang, X. B.; Li, Y. X.; Yan, L. L.; Zhao, Y. Y.; Shao, L. Progress reports of metal-phenolic network engineered membranes for water treatment. Sep. Purif. Technol. 2023, 320, 124225.

    Article  CAS  Google Scholar 

  22. Su, S. Z.; Che, R.; Liu, Q.; Liu, J. Y.; Zhang, H. S.; Li, R. M.; Jing, X. Y.; Wang, J. Zeolitic Imidazolate Framework-67: A promising candidate for recovery of uranium (VI) from seawater. Colloids Surf. A: Physicochem. Eng. Asp. 2018, 547, 73–80.

    Article  CAS  Google Scholar 

  23. Wu, Y. H.; Pang, H. W.; Yao, W.; Wang, X. X.; Yu, S. J.; Yu, Z. M.; Wang, X. K. Synthesis of rod-like metal-organic framework (MOF-5) nanomaterial for efficient removal of U(VI): Batch experiments and spectroscopy study. Sci. Bull. 2018, 63, 831–839.

    Article  CAS  Google Scholar 

  24. Lyu, B.; Ren, J. J.; Kang, B.; Lang, Q. L.; Tu, J.; Bu, J.; Yang, X.; Wang, H.; Gao, D. G.; Ma, J. Z. Excellent compression performance gelatin/polyacrylamide/vinyl modified SiO2 composite DN hydrogels with shape memory. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 652, 129848.

    Article  Google Scholar 

  25. Gaabour, L. H. Influence of silica nanoparticles incorporated with chitosan/polyacrylamide polymer nanocomposites. J. Mater. Res. Technol. 2019, 8, 2157–2163.

    Article  CAS  Google Scholar 

  26. Lu, T.; Liu, Z. Y.; Chen, Q. X. Comment on “18 and 12-Member carbon rings (cyclo[n]carbons)-A density functional study”. Mater. Sci. Eng.: B 2021, 273, 115425.

    Article  CAS  Google Scholar 

  27. Zhang, J.; Lu, T. Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 2021, 23, 20323–20328.

    Article  CAS  PubMed  Google Scholar 

  28. Song, Y. C.; Li, H.; Shan, T. H.; Yang, P. P.; Li, S. W.; Liu, Z.; Liu, C. T.; Shen, C. Y. MOF-implanted poly (acrylamide-co-acrylic acid)/chitosan organic hydrogel for uranium extraction from seawater. Carbohydr. Polym. 2023, 302, 120377.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, H. H.; Li, C.; Liu, L.; Meng, B.; Yang, N. T.; Sunarso, J.; Liu, L. H.; Liu, S. M.; Wang, X. B. ZIF-67 membranes supported on porous ZnO hollow fibers for hydrogen separation from gas mixtures. J. Membr. Sci. 2022, 653, 120550.

    Article  CAS  Google Scholar 

  30. Li, Z.; Sun, Y. J.; Wu, X. J.; Yuan, H.; Yu, Y.; Tan, Y. Q. Boosting adsorption and catalysis of polysulfides by multifunctional separator for lithium-sulfur batteries. ACS Energy Lett. 2022, 7, 4190–4197.

    Article  ADS  CAS  Google Scholar 

  31. Haruna, M. A.; Gardy, J.; Yao, G.; Hu, Z. L.; Hondow, N.; Wen, D. S. Nanoparticle modified polyacrylamide for enhanced oil recovery at harsh conditions. Fuel 2020, 268, 117186.

    Article  CAS  Google Scholar 

  32. Wang, Y.; Mei, Y.; Wang, Q.; Wei, W.; Huang, F.; Li, Y.; Li, J. Y.; Zhou, Z. W. Improved fracture toughness and ductility of PLA composites by incorporating a small amount of surface-modified helical carbon nanotubes. Compos. Part B: Eng. 2019, 162, 54–61.

    Article  CAS  Google Scholar 

  33. Meng, X. H.; Qiao, Y.; Do, C.; Bras, W.; He, C. Y.; Ke, Y. B.; Russell, T. P.; Qiu, D. Hysteresis-free nanoparticle-reinforced hydrogels. Adv. Mater. 2022, 34, 2108243.

    Article  CAS  Google Scholar 

  34. Zhu, T. Y.; Zhao, X. X.; Yi, M.; Xu, S.; Wang, Y. Ternary cross-linked PVA-APTES-ZIF-90 membrane for enhanced ethanol dehydration performance. Adv. Compos. Hybrid Mater. 2022, 5, 91–103.

    Article  CAS  Google Scholar 

  35. Wu, M. C.; Zhao, J.; Li, C. L.; Liu, R. Heterogeneity in a metal-organic framework in situ guides engineering Co@CoO heterojunction for electrocatalytic H2 production in tandem with glucose oxidation. J. Mater. Chem. A 2022, 10, 4791–4799.

    Article  CAS  Google Scholar 

  36. Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 2018, 140, 1812–1823.

    Article  CAS  PubMed  Google Scholar 

  37. Li, H.; Qin, Z.; Yang, X. F.; Chen, X.; Li, Y. W.; Shen, K. Growth pattern control and nanoarchitecture engineering of metal-organic framework single crystals by confined space synthesis. ACS Cent. Sci. 2022, 8, 718–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He, S. L.; Choi, D.; Tang, W. Y.; Ho Row, K. ZIF-8@SiO2 based novel dispersive solid-phase filter extraction technique for the purification of laminarin and fucoidan from undaria pinnatifida. Microchem. J. 2022, 180, 107552.

    Article  CAS  Google Scholar 

  39. Han, M. Z.; Tan, Y. Q.; Meng, A. X.; Xiong, X. T.; Wang, Y. Y.; Lv, H. J. Preparation of chemical-physical hybrid crosslinking double network gel composite incorporated SBS modified asphalt. Int. J. Pavement Eng., in press, DOI: https://doi.org/10.1080/10298436.2021.2022674.

  40. Sun, Y.; Bao, B. B.; Zhu, Y.; Shen, J. J.; Liu, X. Z.; Gao, T.; Lin, J. Q.; Huang, T. L.; Xu, J.; Chai, Y. M. et al. An FPS-ZM1-encapsulated zeolitic imidazolate framework as a dual proangiogenic drug delivery system for diabetic wound healing. Nano Res. 2022, 15, 5216–5229.

    Article  ADS  CAS  Google Scholar 

  41. Liu, W. J.; Wang, Q. L.; Wang, H. Q.; Xin, Q.; Hou, W.; Hu, E. M.; Lei, Z. W. Adsorption of uranium by chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand. Chemosphere 2022, 287, 132193.

    Article  CAS  PubMed  Google Scholar 

  42. Singh, G.; Nayal, A.; Malhotra, S.; Koul, V. Dual functionalized chitosan based composite hydrogel for haemostatic efficacy and adhesive property. Carbohydr. Polym. 2020, 247, 116757.

    Article  CAS  PubMed  Google Scholar 

  43. Yuan, Y. H.; Guo, X.; Feng, L. J.; Yu, Q. H.; Lin, K.; Feng, T. T.; Yan, B. J.; Fedorovich, K. V.; Wang, N. Charge balanced anti-adhesive polyacrylamidoxime hydrogel membrane for enhancing uranium extraction from seawater. Chem. Eng. J. 2021, 421, 127878.

    Article  CAS  Google Scholar 

  44. Li, F. F.; Cui, W. R.; Jiang, W.; Zhang, C. R.; Liang, R. P.; Qiu, J. D. Stable sp2 carbon-conjugated covalent organic framework for detection and efficient adsorption of uranium from radioactive wastewater. J. Hazard. Mater. 2020, 392, 122333.

    Article  CAS  PubMed  Google Scholar 

  45. Ahmadi, S. A. R.; Kalaee, M. R.; Moradi, O.; Nosratinia, F.; Abdouss, M. Core-shell activated carbon-ZIF-8 nanomaterials for the removal of tetracycline from polluted aqueous solution. Adv. Compos. Hybrid Mater. 2021, 4, 1384–1397.

    Article  CAS  Google Scholar 

  46. Gu, H. Q.; Liu, Q.; Zhu, J. H.; Sun, G. H.; Liu, J. Y.; Yu, J.; Li, R. M.; Li, Y.; Wang, J. Mussel-inspired polydopamine microspheres self-adhered on natural hemp fibers for marine uranium harvesting and photothermal-enhanced antifouling properties. J. Colloid Interface Sci. 2022, 622, 109–116.

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Zhang, W. H.; Xu, C. L.; Che, X. P.; Wang, T.; Willför, S.; Li, M. J.; Li, C. X. Encapsulating amidoximated nanofibrous aerogels within wood cell tracheids for efficient cascading adsorption of uranium ions. ACS Nano 2022, 16, 13144–13151.

    Article  CAS  PubMed  Google Scholar 

  48. Shao, Y. M.; Bai, H.; Wang, H. H.; Fei, G. Q.; Li, L. L.; Zhu, Y. Magnetically sensitive and high template affinity surface imprinted polymer prepared using porous TiO2-coated magnetite-silica nanoparticles for efficient removal of tetrabromobisphenol A from polluted water. Adv. Compos. Hybrid Mater. 2022, 5, 130–143.

    Article  CAS  Google Scholar 

  49. Wang, L. H.; Li, H. W.; Li, M. Y.; Zhang, L. Y.; Zhang, H.; Liu, Z. Y.; Zhu, W. C. Trace nitrogen-doped hierarchical porous biochar nanospheres: Waste corn roots derived superior adsorbents for high concentration single and mixed organic dyes removal. Nano Res. 2023, 16, 1846–1858.

    Article  ADS  CAS  Google Scholar 

  50. Xie, Y.; Liu, Z. Y.; Geng, Y. Y.; Li, H.; Wang, N.; Song, Y. P.; Wang, X. L.; Chen, J.; Wang, J. C.; Ma, S. Q. et al. Uranium extraction from seawater: Material design, emerging technologies and marine engineering. Chem. Soc. Rev. 2023, 52, 97–162.

    Article  CAS  PubMed  Google Scholar 

  51. Li, D. G.; Liao, Y. Z.; Chen, Z.; Chang, X. X.; Zhang, X.; Chen, C. C.; Cui, C.; Zhang, Z. L.; Muhire, C.; Tang, W. W. et al. A 3D hierarchical porous adsorbent constructed by cryo-polymerization for ultrafast uranium harvesting from seawater. J. Mater. Chem. A 2023, 11, 10384–10395.

    Article  CAS  Google Scholar 

  52. Ahmad, A. A. Kinetics of uranium adsorption from sulfate medium by a commercial anion exchanger modified with quinoline and silicate. J. Radioanal. Nucl. Chem. 2020, 324, 1387–1403.

    Article  CAS  Google Scholar 

  53. Jian, J. H.; Kang, H. J.; Yu, D. M.; Qiao, X. S.; Liu, Y.; Li, Y.; Qin, W.; Wu, X. H. Bi-functional Co/Al modified 1T-MoS2/rGO catalyst for enhanced uranium extraction and hydrogen evolution reaction in seawater. Small 2023, 19, 2207378.

    Article  CAS  Google Scholar 

  54. Zhu, L. E.; Zhang, C. H.; Ma, F. Q.; Bi, C. L.; Zhu, R. Q.; Wang, C.; Wang, Y. D.; Liu, L. J.; Dong, H. X. Hierarchical self-assembled polyimide microspheres functionalized with amidoxime groups for uranium-containing wastewater remediation. ACS Appl. Mater. Interfaces 2023, 15, 5577–5589.

    Article  CAS  PubMed  Google Scholar 

  55. Zhao, S. L.; Yuan, Y. H.; Yu, Q. H.; Niu, B. Y.; Liao, J. H.; Guo, Z. H.; Wang, N. A dual-surface amidoximated halloysite nanotube for high-efficiency economical uranium extraction from seawater. Angew. Chem., Int. Ed. 2019, 58, 14979–14985.

    Article  CAS  Google Scholar 

  56. Hartline, D. R.; Löffler, S. T.; Fehn, D.; Kasper, J. M.; Heinemann, F. W.; Yang, P.; Batista, E. R.; Meyer, K. Uranium-mediated peroxide activation and a precursor toward an elusive uranium cisdioxo fleeting intermediate. J. Am. Chem. Soc. 2023, 145, 8927–8938.

    Article  CAS  PubMed  Google Scholar 

  57. Yu, R.; Zhang, X. S.; Lu, Y. R.; Chen, W.; Chen, X.; Li, L. B. Advanced amidoximated polyethylene nanofibrous membranes for practical uranium extraction from seawater. ACS Sustain. Chem. Eng. 2022, 10, 12307–12318.

    Article  CAS  Google Scholar 

  58. Zhong, Y.; Mahmud, S.; He, Z. J.; Yang, Y.; Zhang, Z.; Guo, F.; Chen, Z. H.; Xiong, Z.; Zhao, Y. B. Graphene oxide modified membrane for highly efficient wastewater treatment by dynamic combination of nanofiltration and catalysis. J. Hazard. Mater. 2020, 397, 122774.

    Article  CAS  PubMed  Google Scholar 

  59. Wu, F. C.; Pu, N.; Ye, G.; Sun, T. X.; Wang, Z.; Song, Y.; Wang, W. Q.; Huo, X. M.; Lu, Y. X.; Chen, J. Performance and mechanism of uranium adsorption from seawater to poly(dopamine)-inspired sorbents. Environ. Sci. Technol. 2017, 51, 4606–4614.

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Su, M. H.; Liu, Z. Q.; Wu, Y. H.; Peng, H. R.; Ou, T.; Huang, S.; Song, G.; Kong, L. J.; Chen, N.; Chen, D. Y. Graphene oxide functionalized with nano hydroxyapatite for the efficient removal of U(VI) from aqueous solution. Environ. Pollut. 2021, 268, 115786.

    Article  CAS  PubMed  Google Scholar 

  61. Yang, F.; Zhang, Y. Q.; Huang, J. H.; Gao, G.; Zhu, J. Q.; Ma, J.; Shao, L. Unprecedented acid-tolerant ultrathin membranes with finely tuned sub-nanopores for energetic-efficient molecular sieving. Sci. Bull. 2023, 68, 29–33.

    Article  CAS  Google Scholar 

  62. Yan, L. L.; Yang, X. B.; Zeng, H. Z.; Zhao, Y. Y.; Li, Y. X.; He, X. Z.; Ma, J.; Shao, L. Nanocomposite hydrogel engineered hierarchical membranes for efficient oil/water separation and heavy metal removal. J. Membr. Sci. 2023, 668, 121243.

    Article  CAS  Google Scholar 

  63. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

    Article  CAS  PubMed  Google Scholar 

  64. Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

    Article  PubMed  Google Scholar 

  65. Feng, L. J.; Wang, H.; Feng, T. T.; Yan, B. J.; Yu, Q. H.; Zhang, J. C.; Guo, Z. H.; Yuan, Y. H.; Ma, C. X.; Liu, T. et al. In situ synthesis of uranyl-imprinted nanocage for selective uranium recovery from seawater. Angew. Chem., Int. Ed. 2022, 61, e202101015.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2019YFA0706802), the National Natural Science Foundation of China (No. 52002356 and U20A20141), China Postdoctoral Science Foundation (No. 2023M731020), and Project for Young Scientists in Basic Research (No. YSBR-039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peipei Yang or Songwei Li.

Electronic Supplementary Material

12274_2023_6233_MOESM1_ESM.pdf

Assembly of a core–shell MOF with stability into Polyacrylamide hydrogel for boosting extraction of uranium from seawater

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Tan, H., Qin, S. et al. Assembly of a core–shell MOF with stability into Polyacrylamide hydrogel for boosting extraction of uranium from seawater. Nano Res. 17, 3398–3406 (2024). https://doi.org/10.1007/s12274-023-6233-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6233-x

Keywords

Navigation