Skip to main content
Log in

Alloy strategy to synthesize Pt-early transition metal oxide interfacial catalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal oxide supported metal catalysts show promising catalytic performance in many industry-relevant reactions. However, the enhancement of performance is often limited by the insufficient metal/metal oxide interface. In this work, we demonstrate a general synthesis of Pt-early transition metal oxide (Pt-MOx, M = Ti, Zr, V, and Y) catalysts with rich interfacial sites, which is based on the air-induced surface segregation and oxidation of M in the supported Pt-M alloy catalysts. Systematic characterizations verify the dynamic structural response of Pt-M alloy catalysts to air and the formation of Pt-MOx catalysts with abundant interfacial sites. The prepared Pt-TiOx interfacial catalysts exhibit improved performance in hydrogenation reactions of benzaldehyde, nitrobenzene, styrene, and furfural, as a result of the heterolytic dissociation of H2 at Pt-metal oxide interfacial sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie, C. L.; Niu, Z. Q.; Kim, D.; Li, M. F.; Yang, P. D. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2020, 120, 1184–1249.

    Article  CAS  PubMed  Google Scholar 

  2. Qin, R. X.; Deng, G. C.; Zheng, N. F. Assembling effects of surface ligands on metal nanomaterials. Prog. Chem. 2020, 32, 1140–1157.

    CAS  Google Scholar 

  3. Fu, Q.; Yang, F.; Bao, X. H. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc. Chem. Res. 2013, 46, 1692–1701.

    Article  CAS  PubMed  Google Scholar 

  4. Li, X.; Pereira-Hernández, X. I.; Chen, Y. Z.; Xu, J.; Zhao, J. K.; Pao, C. W.; Fang, C. Y.; Zeng, J.; Wang, Y.; Gates, B. C. et al. Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature 2022, 611, 284–288.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Park, J. Y.; Baker, L. R.; Somorjai, G. A. Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions. Chem. Rev. 2015, 115, 2781–2817.

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez, J. A.; Grinter, D. C.; Liu, Z. Y.; Palomino, R. M.; Senanayake, S. D. Ceria-based model catalysts: Fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water-gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 2017, 46, 1824–1841.

    Article  CAS  PubMed  Google Scholar 

  7. Suchorski, Y.; Kozlov, S. M.; Bespalov, I.; Datler, M.; Vogel, D.; Budinska, Z.; Neyman, K. M.; Rupprechter, G. The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation. Nat. Mater. 2008, 17, 519–522.

    Article  ADS  Google Scholar 

  8. Tang, H. L.; Su, Y.; Guo, Y. L.; Zhang, L. L.; Li, T. B.; Zang, K. T.; Liu, F.; Li, L.; Luo, J.; Qiao, B. T. et al. Oxidative strong metal-support interactions (OMSI) of supported platinum-group metal catalysts. Chem. Sci. 2008, 9, 6679–6684.

    Article  Google Scholar 

  9. Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Pérez, M. Activity of CeOx. and TiOx. nanoparticles grown on Au (111) in the water-gas shift reaction. Science 2007, 318, 1757–1760.

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Chen, A. L.; Yu, X. J.; Zhou, Y.; Miao, S.; Li, Y.; Kuld, S.; Sehested, J.; Liu, J. Y.; Aoki, T.; Hong, S. et al. Structure of the catalytically active copper–ceria interfacial perimeter. Nat. Catal. 2019, 2, 334–341.

    Article  CAS  Google Scholar 

  11. Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011, 333, 736–739.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Xu, C. F.; Chen, G. X.; Zhao, Y.; Liu, P. X.; Duan, X. P.; Gu, L.; Fu, G.; Yuan, Y. Z.; Zheng, N. F. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 2018, 9, 3367.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Cargnello, M.; Jaén, J. J. D.; Garrido, J. C. H.; Bakhmutsky, K.; Montini, T.; Gámez, J. J. C.; Gorte, R. J.; Fornasiero, P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 2012, 337, 713–717.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495–499.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2009, 565, 631–635.

    Article  ADS  Google Scholar 

  18. Muravev, V.; Parastaev, A.; van den Bosch, Y.; Ligt, B.; Claes, N.; Bals, S.; Kosinov, N.; Hensen, E. J. M. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts. Science 2023, 380, 1174–1179.

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Yamada, Y.; Tsung, C. K.; Huang, W. Y.; Huo, Z. Y.; Habas, S. E.; Soejima, T.; Aliaga, C. E.; Somorjai, G. A.; Yang, P. D. Nanocrystal bilayer for tandem catalysis. Nat. Chem. 2011, 3, 372–376.

    Article  CAS  PubMed  Google Scholar 

  20. Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013, 341, 771–773.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Xu, H.; Fu, Q.; Guo, X. G.; Bao, X. H. Architecture of Pt-Co bimetallic catalysts for catalytic CO oxidation. ChemCatChem 2012, 4, 1645–1652.

    Article  CAS  Google Scholar 

  22. Zhou, S. H.; Yin, H. F.; Schwartz, V.; Wu, Z. L.; Mullins, D.; Eichhorn, B.; Overbury, S. H.; Dai, S. In situ phase separation of NiAu alloy nanoparticles for preparing highly active Au/NiO CO oxidation catalysts. ChemPhysChem 2008, 9, 2475–2479

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2008, 140, 9046–9050.

    Article  Google Scholar 

  24. Bauer, J. C.; Veith, G. M.; Allard, L. F.; Oyola, Y.; Overbury, S. H.; Dai, S. Silica-supported Au-CuOx hybrid nanocrystals as active and selective catalysts for the formation of acetaldehyde from the oxidation of ethanol. ACS Catal. 2012, 2, 2537–2546.

    Article  CAS  Google Scholar 

  25. Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Frey, H.; Beck, A.; Huang, X.; van Bokhoven, J. A.; Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 2022, 376, 982–987.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2020, 374, 459–464.

    Article  ADS  Google Scholar 

  28. Wu, Z. Y.; Xu, S. L.; Yan, Q. Q.; Chen, Z. Q.; Ding, Y. W.; Li, C.; Liang, H. W.; Yu, S. H. Transition metal-assisted carbonization of small organic molecules toward functional carbon materials. Sci. Adv. 2018, 4, eaat0788.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu, S. L.; Shen, S. C.; Zhao, S.; Ding, Y. W.; Chu, S. Q.; Chen, P.; Lin, Y.; Liang, H. W. Synthesis of carbon-supported sub-2 nanometer bimetallic catalysts by strong metal-sulfur interaction. Chem. Sci. 2020, 11, 7933–7939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Xiong, Y.; Yang, Y.; Joress, H.; Padgett, E.; Gupta, U.; Yarlagadda, V.; Agyeman-Budu, D. N.; Huang, X.; Moylan, T. E.; Zeng, R. et al. Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales. Proc. Natl. Acad. Sci. USA 2019, 116, 1974–1983.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beard, B. C.; Ross, P. N. Platinum-titanium alloy formation from high-temperature reduction of a titania-impregnated platinum catalyst: Implications for strong metal-support interaction. J. Phys. Chem. 1986, 90, 6811–6817.

    Article  CAS  Google Scholar 

  33. Zhang, X. X.; Shi, W.; Li, Y.; Zhao, W. N.; Han, S. B.; Shen, W. J. Pt3Ti intermetallic alloy formed by strong metal-support interaction over Pt/TiO2 for the selective hydrogenation of acetophenone. ACS Catal. 2023, 13, 4030–4041.

    Article  CAS  Google Scholar 

  34. Beck, A.; Frey, H.; Huang, X.; Clark, A. H.; Goodman, E. D.; Cargnello, M.; Willinger, M.; van Bokhoven, J. A. Controlling the strong metal-support interaction overlayer structure in Pt/TiO2 catalysts prevents particle evaporation. Angew. Chem., Int. Ed. 2023, 62, e202301468.

    Article  CAS  Google Scholar 

  35. Mayrhofer, K. J. J.; Juhart, V.; Hartl, K.; Hanzlik, M.; Arenz, M. Adsorbate-induced surface segregation for core–shell nanocatalysts. Angew. Chem., Int. Ed. 2009, 48, 3529–3531.

    Article  CAS  Google Scholar 

  36. He, W. X.; Zhang, X.; Zheng, K.; Wu, C. Q.; Pan, Y.; Li, H. M.; Xu, L. X.; Xu, R. C.; Chen, W.; Liu, Y. et al. Structural evolution of anatase-supported platinum nanoclusters into a platinum-titanium intermetallic containing platinum single atoms for enhanced catalytic CO oxidation. Angew. Chem., Int. Ed. 2023, 62, e202213365.

    Article  CAS  Google Scholar 

  37. Mu, R. T.; Fu, Q.; Liu, H. Y.; Tan, D. L.; Zhai, R. S.; Bao, X. H. Reversible surface structural changes in Pt-based bimetallic nanoparticles during oxidation and reduction cycles. Appl. Surf. Sci. 2009, 255, 7296–7301.

    Article  ADS  CAS  Google Scholar 

  38. Su, H. Y.; Gu, X. K.; Ma, X.; Zhao, Y. H.; Bao, X. H.; Li, W. X. Structure evolution of Pt-3d transition metal alloys under reductive and oxidizing conditions and effect on the CO oxidation: A first-principles study. Catal. Today 2011, 165, 89–95.

    Article  CAS  Google Scholar 

  39. Wu, Z. W.; Bukowski, B. C.; Li, Z.; Milligan, C.; Zhou, L.; Ma, T.; Wu, Y.; Ren, Y.; Ribeiro, F. H.; Delgass, W. N. et al. Changes in catalytic and adsorptive properties of 2 nm Pt3Mn nanoparticles by subsurface atoms. J. Am. Chem. Soc. 2018, 140, 14870–14877.

    Article  CAS  PubMed  Google Scholar 

  40. Cai, W. T.; Mu, R. T.; Zha, S.; Sun, G. D.; Chen, S.; Zhao, Z. J.; Li, H.; Tian, H.; Tang, Y.; Tao, F. et al. Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Sci. Adv. 2018, 4, eaar5418.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502.

    Article  CAS  PubMed  Google Scholar 

  42. Mäkelä, E.; Lahti, R.; Jaatinen, S.; Romar, H.; Hu, T.; Puurunen, R. L.; Lassi, U.; Karinen, R. Study of Ni, Pt, and Ru catalysts on wood-based activated carbon supports and their activity in furfural conversion to 2-methylfuran. ChemCatChem 2018, 10, 3269–3283.

    Article  Google Scholar 

  43. Wang, C. T.; Liu, Z. Q.; Wang, L.; Dong, X.; Zhang, J.; Wang, G. X.; Han, S. C.; Meng, X. J.; Zheng, A. M.; Xiao, F. S. Importance of zeolite wettability for selective hydrogenation of furfural over Pd@Zeolite catalysts. ACS Catal. 2018, 8, 474–481.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding support from the National Natural Science Foundation of China (Nos. 22221003 and 22071225), the Plan for Anhui Major Provincial Science & Technology Project (Nos. 202203a0520013 and 2021d05050006), and the fellowship of China Postdoctoral Science Foundation (No. 2022M712179).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Qi Chu or Hai-Wei Liang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, SL., Nan, H., Zhang, W. et al. Alloy strategy to synthesize Pt-early transition metal oxide interfacial catalysts. Nano Res. 17, 3390–3397 (2024). https://doi.org/10.1007/s12274-023-6218-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6218-5

Keywords

Navigation