Skip to main content
Log in

Substrate screening for superclean graphene growth using first-principles calculations

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Suppressing the formation of amorphous surface carbon and contaminants during the preparation of graphene by chemical vapor deposition remains an ongoing issue. Herein, we analyzed how substrate characteristics affect graphene quality by simulating margin extension, the nucleation process, and defect pegging configurations on mono-crystalline oriented metal substrates with the aim of enhancing graphene cleanliness. Defect formation energy and nucleation potential, which are indirect substrate–graphene interaction features, were found to appropriately evaluate graphene quality. The crystallographic orientation of the metal substrate was discovered to be critical for producing superclean graphene. A low graphene defect density and high nucleation rate on the Cu (100) facet guarantee growth of high-quality graphene, especially in terms of suppressing the formation of amorphous carbon. In addition, rapid kink growth and self-healing on the Cu (100) facet facilitate rapid graphene synthesis, which is also promoted by rapid kink splicing and margin self-repair on this facet. This study provides theoretical insight useful for the synthesis of superclean graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X. P.; Zhang, L. L.; Chen, S. S. Large area CVD growth of graphene. Synth. Met. 2015, 210, 95–108.

    CAS  Google Scholar 

  2. Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080.

    CAS  Google Scholar 

  3. Li, X. S.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 2011, 133, 2816–2819.

    CAS  PubMed  Google Scholar 

  4. Cabrero-Vilatela, A.; Weatherup, R. S.; Braeuninger-Weimer, P.; Caneva, S.; Hofmann, S. Towards a general growth model for graphene CVD on transition metal catalysts. Nanoscale 2016, 8, 2149–2158.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Abergel, D. S. L.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T. Properties of graphene: A theoretical perspective. Adv. Phys. 2010, 59, 261–482.

    CAS  ADS  Google Scholar 

  6. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    CAS  PubMed  ADS  Google Scholar 

  7. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.

    CAS  ADS  Google Scholar 

  8. Gong, C. H.; Hu, K.; Wang, X. P.; Wangyang, P. H.; Yan, C. Y.; Chu, J. W.; Liao, M.; Dai, L. P.; Zhai, T. Y.; Wang, C. et al. 2D nanomaterial arrays for electronics and optoelectronics. Adv. Funct. Mater. 2018, 28, 1706559.

    Google Scholar 

  9. Li, J. Z.; Chen, M. G.; Samad, A.; Dong, H. C.; Ray, A.; Zhang, J. W.; Jiang, X. C.; Schwingenschlögl, U.; Domke, J.; Chen, C. L. et al. Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nat. Mater. 2022, 21, 740–747.

    CAS  PubMed  ADS  Google Scholar 

  10. Chen, Z. L.; Xie, C. Y.; Wang, W. D.; Zhao, J. P.; Liu, B. Y.; Shan, J. Y.; Wang, X. Y.; Hong, M.; Lin, L.; Huang, L. et al. Direct growth of wafer-scale highly oriented graphene on sapphire. Sci. Adv. 2021, 7, eabk0115.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Tai, L. X.; Zhu, D. M.; Liu, X.; Yang, T. Y.; Wang, L.; Wang, R.; Jiang, S.; Chen, Z. H.; Xu, Z. M.; Li, X. L. Direct growth of graphene on silicon by metal-free chemical vapor deposition. Nano-Micro Lett. 2018, 10, 20.

    ADS  Google Scholar 

  12. Filintoglou, K.; Papadopoulos, N.; Arvanitidis, J.; Christofilos, D.; Frank, O.; Kalbac, M.; Parthenios, J.; Kalosakas, G.; Galiotis, C.; Papagelis, K. Raman spectroscopy of graphene at high pressure: Effects of the substrate and the pressure transmitting media. Phys. Rev. B 2013, 88, 045418.

    ADS  Google Scholar 

  13. Yuan, Q. H.; Song, G. Y.; Sun, D. Y.; Ding, F. Formation of graphene grain boundaries on Cu (100) surface and a route towards their elimination in chemical vapor deposition growth. Sci. Rep. 2014, 4, 6541.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Zhang, L. N.; Peng, P.; Ding, F. Epitaxial growth of 2D materials on high-index substrate surfaces. Adv. Funct. Mater. 2021, 31, 2100503.

    CAS  Google Scholar 

  15. Lin, L.; Zhang, J. C.; Su, H. S.; Li, J. Y.; Sun, L. Z.; Wang, Z. H.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. H. et al. Towards super-clean graphene. Nat Commun 2019, 10, 1912.

    PubMed  PubMed Central  ADS  Google Scholar 

  16. Jia, K. C.; Ci, H. N.; Zhang, J. C.; Sun, Z. T.; Ma, Z. T.; Zhu, Y. S.; Liu, S. N.; Liu, J. L.; Sun, L. Z.; Liu, X. T. et al. Superclean growth of graphene using a cold-wall chemical vapor deposition approach. Angew. Chem. 2020, 132, 17367–17371.

    ADS  Google Scholar 

  17. Zhang, J. C.; Sun, L. Z.; Jia, K. C.; Liu, X. T.; Cheng, T.; Peng, H. L.; Lin, L.; Liu, Z. F. New growth frontier: Superclean graphene. ACS Nano 2020, 14, 10796–10803.

    CAS  PubMed  Google Scholar 

  18. Jia, K. C.; Zhang, J. C.; Lin, L.; Li, Z. Z.; Gao, J.; Sun, L. Z.; Xue, R. W.; Li, J. Y.; Kang, N.; Luo, Z. T. et al. Copper-containing carbon feedstock for growing superclean graphene. J. Am. Chem. Soc. 2019, 141, 7670–7674.

    CAS  PubMed  Google Scholar 

  19. Wang, X. L.; Yuan, Q. H.; Li, J.; Ding, F. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth. Nanoscale 2017, 9, 11584–11589.

    CAS  PubMed  Google Scholar 

  20. Cortijo, A.; Vozmediano, M. A. H. Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl. Phys. B 2007, 763, 293–308.

    ADS  Google Scholar 

  21. Li, Y. L. Z.; Sun, L. Z.; Chang, Z. H.; Liu, H. Y.; Wang, Y. C.; Liang, Y.; Chen, B. H.; Ding, Q. J.; Zhao, Z. Y.; Wang, R. Y. et al. Large single-crystal Cu foils with high-index facets by strain-engineered anomalous grain growth. Adv. Mater. 2020, 32, 2002034.

    CAS  Google Scholar 

  22. Murdock, A. T.; Koos, A.; Britton, T. B.; Houben, L.; Batten, T.; Zhang, T.; Wilkinson, A. J.; Dunin-Borkowski, R. E.; Lekka, C. E.; Grobert, N. Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 2013, 7, 1351–1359.

    CAS  PubMed  Google Scholar 

  23. Artyukhov, V. I.; Hao, Y. F.; Ruoff, R. S.; Yakobson, B. I. Breaking of symmetry in graphene growth on metal substrates. Phys. Rev. Lett. 2015, 114, 115502.

    PubMed  ADS  Google Scholar 

  24. Huang, M.; Deng, B. W.; Dong, F.; Zhang, L. L.; Zhang, Z. Y.; Chen, P. Substrate engineering for CVD growth of single crystal graphene. Small Methods 2021, 5, 2001213.

    CAS  Google Scholar 

  25. Lee, H. C.; Liu, W. W., Chai, S. P., Mohamed, A. R.; Aziz, A.; Khe, C. S., Hidayah, N. M. S.; Hashim, U. Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 2017, 7, 15644–15693.

    CAS  ADS  Google Scholar 

  26. Lu, W. J.; Zeng, M. Q.; Li, X. S.; Wang, J.; Tan, L. F.; Shao, M. M.; Han, J. L.; Wang, S.; Yue, S. L.; Zhang, T. et al. Controllable sliding transfer of wafer-size graphene. Adv. Sci. 2016, 3, 1600006.

    Google Scholar 

  27. Zhang, J. C.; Lin, L.; Sun, L. Z.; Huang, Y. C.; Koh, A. L.; Dang, W. H.; Yin, J. B.; Wang, M. Z.; Tan, C. W.; Li, T. R. et al. Clean transfer of large graphene single crystals for high-intactness suspended membranes and liquid cells. Adv. Mater. 2017, 29, 1700639.

    Google Scholar 

  28. Li, P.; Li, Z. Y.; Yang, J. L. Dominant kinetic pathways of graphene growth in chemical vapor deposition: The role of hydrogen. J. Phys. Chem. C 2017, 121, 25949–25955.

    CAS  Google Scholar 

  29. Losurdo, M.; Giangregorio, M. M.; Capezzuto, P.; Bruno, G. Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 2011, 13, 20836–20843.

    CAS  PubMed  Google Scholar 

  30. Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.

    CAS  PubMed  Google Scholar 

  31. Krasheninnikov, A. V.; Lehtinen, P. O.; Foster, A. S.; Nieminen, R. M. Bending the rules: Contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chem. Phys. Lett. 2006, 418, 132–136.

    CAS  ADS  Google Scholar 

  32. Li, L.; Reich, S.; Robertson, J. Defect energies of graphite: Density-functional calculations. Phys. Rev. B 2005, 72, 184109.

    ADS  Google Scholar 

  33. Lusk, M. T.; Carr, L. D. Nanoengineering defect structures on graphene. Phys. Rev. Lett. 2008, 100, 175503.

    PubMed  ADS  Google Scholar 

  34. Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 2004, 430, 870–873.

    CAS  PubMed  ADS  Google Scholar 

  35. Lee, H. C.; Bong, H.; Yoo, M. S.; Jo, M.; Cho, K. Copper-vapor-assisted growth and defect-healing of graphene on copper surfaces. Small 2018, 14, 1801181.

    Google Scholar 

  36. Lin, H. C.; Chen, Y. Z.; Wang, Y. C.; Chueh, Y. L. The essential role of Cu vapor for the self-limit graphene via the Cu catalytic CVD method. J. Phys. Chem. C 2015, 119, 6835–6842.

    CAS  Google Scholar 

  37. Kim, Y.; Ihm, J.; Yoon, E.; Lee, G. D. Dynamics and stability of divacancy defects in graphene. Phys. Rev. B 2011, 84, 075445.

    ADS  Google Scholar 

  38. Zhu, J. W.; Huang, Y. P.; Mei, W. C.; Zhao, C. Y.; Zhang, C. T.; Zhang, J.; Amiinu, I. S.; Mu, S. C. Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem. 2019, 131, 3899–39904.

    ADS  Google Scholar 

  39. Chen, S. D.; Bai, Q. S.; Wang, H. F.; Dou, Y. H.; Guo, W. M. Controlled growth of large-area monolayer graphene on Ni (110) facet: Insight from molecular dynamics simulation. Phys. E:Low-Dimens. Syst. Nanostruct. 2022, 144, 115465.

    CAS  Google Scholar 

  40. Sun, X. C.; Luo, X. Y.; Su, Z.; Yu, F. P.; Li, Y. L.; Cheng, X. F.; Zhao, X. Effect of BN seeds on locating and promoting the initial nucleation of graphene on Cu substrate and its mechanism: A theoretical study. Appl. Surf. Sci. 2020, 523, 146469.

    CAS  Google Scholar 

  41. Shu, H. B.; Chen, X. S.; Tao, X. M.; Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano 2012, 6, 3243–3250.

    CAS  PubMed  Google Scholar 

  42. Wu, P.; Zhang, Y.; Cui, P.; Li, Z. Y.; Yang, J. L.; Zhang, Z. Y. Carbon dimers as the dominant feeding species in epitaxial growth and morphological phase transition of graphene on different Cu substrates. Phys. Rev. Lett. 2015, 114, 216102.

    PubMed  ADS  Google Scholar 

  43. Dong, J. C.; Zhang, L. N.; Dai, X. Y.; Ding, F. The epitaxy of 2D materials growth. Nat. Commun. 2020, 11, 5862.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Page, A. J.; Wang, Y.; Li, H. B.; Irle, S.; Morokuma, K. Nucleation of graphene precursors on transition metal surfaces: Insights from theoretical simulations. J. Phys. Chem. C 2013, 117, 14858–14864.

    CAS  Google Scholar 

  45. Li, H. B.; Page, A. J.; Hettich, C.; Aradi, B.; Köhler, C.; Frauenheim, T.; Irle, S.; Morokuma, K. Graphene nucleation on a surface-molten copper catalyst: Quantum chemical molecular dynamics simulations. Chem. Sci. 2014, 5, 3493–3500.

    CAS  Google Scholar 

  46. Wang, H. Y.; Li, H. B.; Lin, N.; Wang, J. J.; Xu, R.; Zhao, X. Morphology effects of graphene seeds on the quality of graphene nucleation: Quantum chemical molecular dynamics simulations. J. Phys. Chem. C 2021, 125, 5056–5065.

    CAS  Google Scholar 

  47. Wang, Y.; Page, A. J.; Nishimoto, Y.; Qian, H. J.; Morokuma, K.; Irle, S. Template effect in the competition between haeckelite and graphene growth on Ni (111): Quantum chemical molecular dynamics simulations. J. Am. Chem. Soc. 2011, 133, 18837–18842.

    CAS  PubMed  Google Scholar 

  48. Zhang, X. Y.; Ding, F. The magic-sized carbon clusters on the transition metal surfaces with a four-fold symmetry. Carbon 2020, 156, 282–286.

    CAS  Google Scholar 

  49. Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.

    CAS  PubMed  Google Scholar 

  50. Wang, L.; Gao, J. F.; Ding, F. Application of crystal growth theory in graphene CVD nucleation and growth. Acta Chim. Sin. 2014, 72, 345–358.

    CAS  Google Scholar 

  51. Vlassiouk, I.; Smirnov, S.; Regmi, M.; Surwade, S. P.; Srivastava, N.; Feenstra, R.; Eres, G.; Parish, C.; Lavrik, N.; Datskos, P. et al. Graphene nucleation density on copper: Fundamental role of background pressure. J. Phys. Chem. C 2013, 117, 18919–18926.

    CAS  Google Scholar 

  52. Artyukhov, V. I.; Liu, Y. Y.; Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. USA 2012, 109, 15136–15140.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, Nos. T2188101, 52021006, and 52072042), the National Natural Science Foundation Youth Fund (Nos. 22105006 and 52202033), Beijing National Laboratory for Molecular Science (No. BNLMS-CXTD-202001), the National Key R&D Program of China (No. 2018YFA0703502), and the Beijing Municipal Science & Technology Commission (Nos. Z191100000819005, Z191100000819007, and Z201100008720005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-Jian Yin or Zhongfan Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Sun, X., Sun, X. et al. Substrate screening for superclean graphene growth using first-principles calculations. Nano Res. 17, 2216–2222 (2024). https://doi.org/10.1007/s12274-023-6193-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6193-x

Keywords

Navigation