Skip to main content
Log in

Bioinspired nanotransducers for neuromodulation

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The field of neuromodulation has experienced significant advancements in the past decade, owing to breakthroughs in disciplines such as materials science, genetics, bioengineering, photonics, and beyond. The convergence of these fields has resulted in the development of nanotransducers, devices that harness the synergies of these diverse disciplines. These nanotransducers, essential for neuromodulation, often draw inspiration from energy conversion processes found in nature for their unique modalities. In this review, we will delve into the latest advancements in wireless neuromodulation facilitated by optical, magnetic, and mechanical nanotransducers. We will examine their working principles, properties, advantages, and limitations in comparison to current methods for deep brain neuromodulation, highlighting the impact of natural systems on their design and functionality. Additionally, we will underscore potential future directions, emphasizing how continued progress in materials science, neuroscience, and bioengineering might expand the horizons of what is achievable with nanotransducer-enabled neuromodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Won, S. M.; Song, E. M.; Reeder, J. T.; Rogers, J. A. Emerging modalities and implantable technologies for neuromodulation. Cell 2020, 181, 115–135.

    Article  CAS  PubMed  Google Scholar 

  2. Lozano, A. M.; Lipsman, N.; Bergman, H.; Brown, P.; Chabardes, S.; Chang, J. W.; Matthews, K.; McIntyre, C. C.; Schlaepfer, T. E.; Schulder, M. et al. Deep brain stimulation: Current challenges and future directions. Nat. Rev. Neurol. 2019, 15, 148–160.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang, F.; Aravanis, A. M.; Adamantidis, A.; De Lecea, L.; Deisseroth, K. Circuit-breakers: Optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 2007, 8, 577–581.

    Article  CAS  PubMed  Google Scholar 

  4. Yang, F.; Kim, S. J.; Wu, X.; Cui, H.; Hahn, S. K.; Hong, G. S. Principles and applications of sono-optogenetics. Adv. Drug Delivery Rev. 2023, 194, 114711.

    Article  CAS  Google Scholar 

  5. Li, X. Y.; Xiong, H. J.; Rommelfanger, N.; Xu, X. Q.; Youn, J.; Slesinger, P. A.; Hong, G. S.; Qin, Z. P. Nanotransducers for wireless neuromodulation. Matter 2021, 4, 1484–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, X.; Zhou, T.; Zwang, T. J.; Hong, G. S.; Zhao, Y. L.; Viveros, R. D.; Fu, T. M.; Gao, T.; Lieber, C. M. Bioinspired neuron-like electronics. Nat. Mater. 2019, 18, 510–517.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 2005, 8, 1263–1268.

    Article  CAS  PubMed  Google Scholar 

  8. Marshel, J. H.; Kim, Y. S.; Machado, T. A.; Quirin, S.; Benson, B.; Kadmon, J.; Raja, C.; Chibukhchyan, A.; Ramakrishnan, C.; Inoue, M. et al. Cortical layer-specific critical dynamics triggering perception. Science 2019, 365, eaaw5202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.

    Article  CAS  Google Scholar 

  10. Zhang, F.; Gradinaru, V.; Adamantidis, A. R.; Durand, R.; Airan, R. D.; De Lecea, L.; Deisseroth, K. Optogenetic interrogation of neural circuits: Technology for probing mammalian brain structures. Nat. Protoc. 2010, 5, 439–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y. H.; Song, J. Z.; Song, Y. M.; Pao, H. A.; Kim, R. H. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013, 340, 211–216.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Montgomery, K. L.; Yeh, A. J.; Ho, J. S.; Tsao, V.; Mohan Iyer, S.; Grosenick, L.; Ferenczi, E. A.; Tanabe, Y.; Deisseroth, K.; Delp, S. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 2015, 12, 969–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, Y. Y.; Wu, M. Z.; Vázquez-Guardado, A.; Wegener, A. J.; Grajales-Reyes, J. G.; Deng, Y. J.; Wang, T. Y.; Avila, R.; Moreno, J. A.; Minkowicz, S. et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 2021, 14, 1035–1045.

    Article  Google Scholar 

  14. Lin, J. Y.; Knutsen, P. M.; Muller, A.; Kleinfeld, D.; Tsien, R. Y. ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 2013, 16, 1499–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, R.; Gore, F.; Nguyen, Q. A.; Ramakrishnan, C.; Patel, S.; Kim, S. H.; Raffiee, M.; Kim, Y. S.; Hsueh, B.; Krook-Magnusson, E. et al. Deep brain optogenetics without intracranial surgery. Nat. Biotechnol. 2021, 39, 161–164.

    Article  CAS  PubMed  Google Scholar 

  16. Bedbrook, C. N.; Yang, K. K.; Robinson, J. E.; Mackey, E. D.; Gradinaru, V.; Arnold, F. H. Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics. Nat. Methods 2019, 16, 1176–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gong, X.; Mendoza-Halliday, D.; Ting, J. T.; Kaiser, T.; Sun, X. Y.; Bastos, A. M.; Wimmer, R. D.; Guo, B. L.; Chen, Q.; Zhou, Y. et al. An ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. Neuron 2020, 107, 38–51.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deisseroth, K.; Anikeeva, P. Upconversion of light for use in optogenetic methods. U. S. Patent 9, 522, 288, December 20, 2016.

  19. Hososhima, S.; Yuasa, H.; Ishizuka, T.; Hoque, M. R.; Yamashita, T.; Yamanaka, A.; Sugano, E.; Tomita, H.; Yawo, H. Near-infrared (NIR) up-conversion optogenetics. Sci. Rep. 2015, 5, 16533.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Shah, S.; Liu, J. J.; Pasquale, N.; Lai, J. P.; McGowan, H.; Pang, Z. P.; Lee, K. B. Hybrid upconversion nanomaterials for optogenetic neuronal control. Nanoscale 2015, 7, 16571–16577.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Wu, X.; Zhang, Y. W.; Takle, K.; Bilsel, O.; Li, Z. J.; Lee, H.; Zhang, Z. J.; Li, D. S.; Fan, W.; Duan, C. Y. et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 2016, 10, 1060–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pliss, A.; Ohulchanskyy, T. Y.; Chen, G. Y.; Damasco, J.; Bass, C. E.; Prasad, P. N. Subcellular optogenetics enacted by targeted nanotransformers of near-infrared light. ACS Photonics 2017, 4, 806–814.

    Article  CAS  Google Scholar 

  23. Yadav, K.; Chou, A. C.; Ulaganathan, R. K.; Gao, H. D.; Lee, H. M.; Pan, C. Y.; Chen, Y. T. Targeted and efficient activation of channelrhodopsins expressed in living cells via specifically-bound upconversion nanoparticles. Nanoscale 2017, 9, 9457–9466.

    Article  CAS  PubMed  Google Scholar 

  24. Bansal, A.; Liu, H. C.; Jayakumar, M. K. G.; Andersson-Engels, S.; Zhang, Y. Quasi-continuous wave near-infrared excitation of upconversion nanoparticles for optogenetic manipulation of C. elegans. Small 2016, 12, 1732–1743.

    Article  CAS  PubMed  Google Scholar 

  25. Ai, X. Z.; Lyu, L.; Zhang, Y.; Tang, Y. X.; Mu, J.; Liu, F.; Zhou, Y. X.; Zuo, Z. H.; Liu, G.; Xing, B. G. Remote regulation of membrane channel activity by site-specific localization of lanthanide-doped upconversion nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 3031–3035.

    Article  CAS  Google Scholar 

  26. Wang, Y.; Lin, X. D.; Chen, X.; Chen, X.; Xu, Z.; Zhang, W. C.; Liao, Q. H.; Duan, X.; Wang, X.; Liu, M. et al. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Biomaterials 2017, 142, 136–148.

    Article  CAS  PubMed  Google Scholar 

  27. Lin, X. D.; Wang, Y.; Chen, X.; Yang, R. H.; Wang, Z. X.; Feng, J. Y.; Wang, H. T.; Lai, K. W. C.; He, J. F.; Wang, F. et al. Multiplexed optogenetic stimulation of neurons with spectrum-selective upconversion nanoparticles. Adv. Healthcare Mater. 2017, 6, 1700446.

    Article  Google Scholar 

  28. Lin, X. D.; Chen, X.; Zhang, W. C.; Sun, T. Y.; Fang, P. L.; Liao, Q. H.; Chen, X.; He, J. F.; Liu, M.; Wang, F. et al. Core–shell–shell upconversion nanoparticles with enhanced emission for wireless optogenetic inhibition. Nano Lett. 2018, 18, 948–956.

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L. M.; Wang, X. Y.; Tao, Y. Q.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018, 359, 679–684.

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Ma, Y. Q.; Bao, J.; Zhang, Y. W.; Li, Z. J.; Zhou, X. Y.; Wan, C. L.; Huang, L.; Zhao, Y.; Han, G.; Xue, T. Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae. Cell 2019, 177, 243–255.e15.

    Article  CAS  PubMed  Google Scholar 

  31. Ding, H.; Lu, L. H.; Shi, Z.; Wang, D.; Li, L. Z.; Li, X. C.; Ren, Y. Q.; Liu, C. B.; Cheng, D. L.; Kim, H. et al. Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources. Proc. Natl. Acad. Sci. USA 2018, 115, 6632–6637.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Mei, Q. S.; Bansal, A.; Jayakumar, M. K. G.; Zhang, Z. M.; Zhang, J.; Huang, H.; Yu, D. J.; Ramachandra, C. J. A.; Hausenloy, D. J.; Soong, T. W. et al. Manipulating energy migration within single lanthanide activator for switchable upconversion emissions towards bidirectional photoactivation. Nat. Commun. 2019, 10, 4416.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  33. Liu, X.; Chen, H. M.; Wang, Y. T.; Si, Y. G.; Zhang, H. X.; Li, X. M.; Zhang, Z. C.; Yan, B.; Jiang, S.; Wang, F. et al. Near-infrared manipulation of multiple neuronal populations via trichromatic upconversion. Nat. Commun. 2021, 12, 5662.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Shapiro, M. G.; Homma, K.; Villarreal, S.; Richter, C. P.; Bezanilla, F. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 2012, 3, 736.

    Article  PubMed  ADS  Google Scholar 

  35. Lyu, Y.; Xie, C.; Chechetka, S. A.; Miyako, E.; Pu, K. Y. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 2016, 138, 9049–9052.

    Article  CAS  PubMed  Google Scholar 

  36. Rastogi, S. K.; Garg, R.; Scopelliti, M. G.; Pinto, B. I.; Hartung, J. E.; Kim, S.; Murphey, C. G. E.; Johnson, N.; San Roman, D.; Bezanilla, F. et al. Remote nongenetic optical modulation of neuronal activity using fuzzy graphene. Proc. Natl. Acad. Sci. USA 2020, 117, 13339–13349.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Gracheva, E. O.; Ingolia, N. T.; Kelly, Y. M.; Cordero-Morales, J. F.; Hollopeter, G.; Chesler, A. T.; Sánchez, E. E.; Perez, J. C.; Weissman, J. S.; Julius, D. Molecular basis of infrared detection by snakes. Nature 2010, 464, 1006–1011.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Li, J. C.; Pu, K. Y. Semiconducting polymer nanomaterials as near-infrared photoactivatable protherapeutics for cancer. Acc. Chem. Res. 2020, 53, 752–762.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  39. Wu, X.; Yang, F.; Cai, S.; Pu, K. Y.; Hong, G. S. Nanotransducer-enabled deep-brain neuromodulation with NIR-II light. ACS Nano 2023, 17, 7941–7952.

    Article  CAS  PubMed  Google Scholar 

  40. Wu, X.; Jiang, Y. Y.; Rommelfanger, N. J.; Yang, F.; Zhou, Q.; Yin, R. K.; Liu, J. L.; Cai, S.; Ren, W.; Shin, A. et al. Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window. Nat. Biomed. Eng. 2022, 6, 754–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakatsuji, H.; Numata, T.; Morone, N.; Kaneko, S.; Mori, Y.; Imahori, H.; Murakami, T. Thermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 11725–11729.

    Article  CAS  Google Scholar 

  42. Nelidova, D.; Morikawa, R. K.; Cowan, C. S.; Raics, Z.; Goldblum, D.; Scholl, H. P. N.; Szikra, T.; Szabo, A.; Hillier, D.; Roska, B. Restoring light sensitivity using tunable near-infrared sensors. Science 2020, 368, 1108–1113.

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Efros, A. L.; Delehanty, J. B.; Huston, A. L.; Medintz, I. L.; Barbic, M.; Harris, T. D. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat. Nanotechnol. 2018, 13, 278–288.

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Yang, F.; Zhang, Q. Z.; Huang, S. Y.; Ma, D. L. Recent advances of near infrared inorganic fluorescent probes for biomedical applications. J. Mater. Chem. B 2020, 8, 7856–7879.

    Article  CAS  PubMed  Google Scholar 

  45. Bahmani Jalali, H.; Mohammadi Aria, M.; Dikbas, U. M.; Sadeghi, S.; Ganesh Kumar, B.; Sahin, M.; Kavakli, I. H.; Ow-Yang, C. W.; Nizamoglu, S. Effective neural photostimulation using indium-based type-II quantum dots. ACS Nano 2018, 12, 8104–8114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Karatum, O.; Kaleli, H. N.; Eren, G. O.; Sahin, A.; Nizamoglu, S. Electrical stimulation of neurons with quantum dots via near-infrared light. ACS Nano 2022, 16, 8233–8243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, F.; Skripka, A.; Tabatabaei, M. S.; Hong, S. H.; Ren, F. Q.; Huang, Y.; Oh, J. K.; Martel, S.; Liu, X. Y.; Vetrone, F. et al. Magnetic photoluminescent nanoplatform built from large-pore mesoporous silica. Chem. Mater. 2019, 31, 3201–3210.

    Article  CAS  Google Scholar 

  48. Yang, F.; Skripka, A.; Tabatabaei, M. S.; Hong, S. H.; Ren, F. Q.; Benayas, A.; Oh, J. K.; Martel, S.; Liu, X. Y.; Vetrone, F. et al. Multifunctional self-assembled supernanoparticles for deep-tissue bimodal imaging and amplified dual-mode heating treatment. ACS Nano 2019, 13, 408–420.

    Article  CAS  PubMed  Google Scholar 

  49. Martinac, B. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim. Biophys. Acta Biomembr. 2014, 1838, 682–691.

    Article  CAS  Google Scholar 

  50. Huang, H.; Delikanli, S.; Zeng, H.; Ferkey, D. M.; Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 2010, 5, 602–606.

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Chen, R.; Romero, G.; Christiansen, M. G.; Mohr, A.; Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 2015, 347, 1477–1480.

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Munshi, R.; Qadri, S. M.; Zhang, Q.; Castellanos Rubio, I.; Del Pino, P.; Pralle, A. Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. Elife 2017, 6, e27069.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lee, J. U.; Shin, W.; Lim, Y.; Kim, J.; Kim, W. R.; Kim, H.; Lee, J. H.; Cheon, J. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat. Mater. 2021, 20, 1029–1036.

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Nimpf, S.; Keays, D. A. Is magnetogenetics the new optogenetics. EMBO J. 2017, 36, 1643–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deng, W. L.; Zhou, Y. H.; Libanori, A.; Chen, G. R.; Yang, W. Q.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435.

    Article  CAS  PubMed  Google Scholar 

  56. Deng, W. L.; Libanori, A.; Xiao, X.; Fang, J.; Zhao, X.; Zhou, Y. H.; Chen, G. R.; Li, S.; Chen, J. Computational investigation of ultrasound induced electricity generation via a triboelectric nanogenerator. Nano Energy 2022, 91, 106656.

    Article  CAS  Google Scholar 

  57. Zhou, Y. H.; Zhao, X.; Xu, J.; Fang, Y. S.; Chen, G. R.; Song, Y.; Li, S.; Chen, J. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 2021, 20, 1670–1676.

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Yang, F.; Cui, H.; Wu, X.; Kim, S. J.; Hong, G. S. Ultrasound-activated luminescence with color tunability enabled by mechanoluminescent colloids and perovskite quantum dots. Nanoscale 2023, 15, 1629–1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, W. L.; Wu, X.; Kevin Tang, K. W.; Pyatnitskiy, I.; Taniguchi, R.; Lin, P.; Zhou, R.; Capocyan, S. L. C.; Hong, G. S.; Wang, H. L. Ultrasound-triggered in situ photon emission for noninvasive optogenetics. J. Am. Chem. Soc. 2023, 145, 1097–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang, F.; Wu, X.; Cui, H.; Jiang, S.; Ou, Z. H.; Cai, S.; Hong, G. S. Palette of rechargeable mechanoluminescent fluids produced by a biomineral-inspired suppressed dissolution approach. J. Am. Chem. Soc. 2022, 144, 18406–18418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, F.; Wu, X.; Cui, H.; Ou, Z. H.; Jiang, S.; Cai, S.; Zhou, Q.; Wong, B. G.; Huang, H.; Hong, G. S. A biomineral-inspired approach of synthesizing colloidal persistent phosphors as a multicolor, intravital light source. Sci. Adv. 2022, 8, eabo6743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yoo, J. W.; Chambers, E.; Mitragotri, S. Factors that control the circulation time of nanoparticles in blood: Challenges, solutions and future prospects. Curr. Pharm. Des. 2010, 16, 2298–2307.

    Article  CAS  PubMed  Google Scholar 

  63. Wu, X.; Zhu, X. J.; Chong, P.; Liu, J. L.; Andre, L. N.; Ong, K. S.; Brinson, K.; Mahdi, A. I.; Li, J. C.; Fenno, L. E. et al. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proc. Natl. Acad. Sci. USA 2019, 116, 26332–26342.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  64. Zhang, Y. Y.; Zhang, X.; Wang, H. J.; Tian, Y.; Pan, H. Z.; Zhang, L. L.; Wang, F.; Chang, J. Remote regulation of optogenetic proteins by a magneto-luminescence microdevice. Adv. Funct. Mater. 2021, 31, 2006357.

    Article  CAS  Google Scholar 

  65. Jiang, Y. W.; Parameswaran, R.; Li, X. J.; Carvalho-De-Souza, J. L.; Gao, X.; Meng, L. Y.; Bezanilla, F.; Shepherd, G. M. G.; Tian, B. Z. Nongenetic optical neuromodulation with silicon-based materials. Nat. Protoc. 2019, 14, 1339–1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jiang, Y. W.; Carvalho-De-Souza, J. L.; Wong, R. C. S.; Luo, Z. Q.; Isheim, D.; Zuo, X. B.; Nicholls, A. W.; Jung, I. W.; Yue, J. P.; Liu, D. J. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater. 2016, 15, 1023–1030.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  67. Jiang, Y. W.; Li, X. J.; Liu, B.; Yi, J.; Fang, Y.; Shi, F. Y.; Gao, X.; Sudzilovsky, E.; Parameswaran, R.; Koehler, K. et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng. 2018, 2, 508–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang, Y. X.; Cui, Y. T.; Deng, H. J.; Wang, J. J.; Hong, R. Q.; Hu, S. H.; Hou, H. Q.; Dong, Y. R.; Wang, H. C.; Chen, J. Y. et al. Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities. Nat. Biomed. Eng. 2023, 7, 486–498.

    Article  CAS  PubMed  Google Scholar 

  69. Zhu, M. T.; Nie, G. J.; Meng, H.; Xia, T.; Nel, A.; Zhao, Y. L. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc. Chem. Res. 2013, 46, 622–631.

    Article  CAS  PubMed  Google Scholar 

  70. Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415.

    Article  CAS  PubMed  Google Scholar 

  71. Hong, G. S. Seeing the sound. Science 2020, 369, 638–638.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgments

G. S. H. acknowledges the Rita Allen Foundation Scholars Award, the Beckman Technology Development Grant, the grant from the focused ultrasound (FUS) Foundation, the gift from the Spinal Muscular Atrophy (SMA) Foundation, the gift from the Pinetops Foundation, two seed grants from the Wu Tsai Neurosciences Institute, and two seed grants from the Bio-X Initiative of Stanford University. X. W. acknowledges the support by the Stanford Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosong Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Wu, X., Cai, S. et al. Bioinspired nanotransducers for neuromodulation. Nano Res. 17, 618–632 (2024). https://doi.org/10.1007/s12274-023-6136-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6136-6

Keywords

Navigation