Skip to main content
Log in

Ionic liquid-trimetallic electrocatalytic system for C-O bond cleavage in lignin model compounds and lignin under ambient conditions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalytic depolymerization of lignin into value-added chemicals offers a promising technique to make biorefining sustainable. Herein, we report a robust trimetallic PdNiBi electrocatalyst for reductive C-O bond cleavage of different lignin model dimers and oxidized lignin under mild conditions. The reduction reaction proceeds with complete substrate conversion and excellent yields toward monomers of phenols (80%–99%) and acetophenones (75%–96%) in the presence of an ionic liquid electrolyte with operational stability. Systematic experimental investigations together with density functional theory (DFT) calculations reveal that the outstanding performance of the catalyst results from the synergistic effect of the metal elements, which facilitates the easier formation of a key Cα radical intermediate and the facile desorption of the as-formed products at the electrode. The results open up new opportunities for lignin valorization through the green electrocatalytic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 707, 2411–2502.

    Google Scholar 

  2. Meng, G.; Lan, W.; Zhang, L. L.; Wang, S. B.; Zhang, T. H.; Zhang, S.; Xu, M.; Wang, Y.; Zhang, J.; Yue, F. X. et al. Synergy of single atoms and Lewis acid sites for efficient and selective lignin disassembly into monolignol derivatives. J. Am. Chem. Soc. 2023, 145, 12884–12893.

    CAS  PubMed  Google Scholar 

  3. Deng, W. P.; Feng, Y. C.; Fu, J.; Guo, H. W.; Guo, Y.; Han, B. X.; Jiang, Z. C.; Kong, L. Z.; Li, C. Z.; Liu, H. C. et al. Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy Environ. 2023, 8, 10–114.

    CAS  Google Scholar 

  4. Pińkowska, H.; Wolak, P.; Złocińska, A. Hydrothermal decomposition of alkali lignin in sub- and supercritical water. Chem. Eng. J. 2012, 187, 410–414.

    Google Scholar 

  5. Carrozza, C. F.; Papa, G.; Citterio, A.; Sebastiano, R.; Simmons, B. A.; Singh, S. One-pot bio-derived ionic liquid conversion followed by hydrogenolysis reaction for biomass valorization: A promising approach affecting the morphology and quality of lignin of switchgrass and poplar. Bioresour. Technol. 2019, 294, 122214.

    CAS  PubMed  Google Scholar 

  6. Zhou, Y. T.; Klinger, G. E.; Hegg, E. L.; Saffron, C. M.; Jackson, J. E. Multiple mechanisms mapped in aryl alkyl ether cleavage via aqueous electrocatalytic hydrogenation over skeletal nickel. J. Am. Chem. Soc. 2020, 142, 4037–4050.

    CAS  PubMed  Google Scholar 

  7. Yang, C.; Magallanes, G.; Maldonado, S.; Stephenson, C. R. J. Electro-reductive fragmentation of oxidized lignin models. J. Org. Chem. 2021, 86, 15927–15934.

    CAS  PubMed  Google Scholar 

  8. LiShuai, L.; Sitison, J.; Sadula, S.; Ding, J. H.; Thies, M. C.; Saha, B. Selective C–C bond cleavage of methylene-linked lignin models and Kraft lignin. ACS Catal. 2018, 8, 6507–6512.

    Google Scholar 

  9. Zhang, Y. Q.; He, H. Y.; Liu, Y. R.; Wang, Y. L.; Huo, F.; Fan, M. H.; Adidharma, H.; Li, X. H.; Zhang, S. J. Recent progress in theoretical and computational studies on the utilization of lignocellulosic materials. Green Chem. 2019, 21, 9–35.

    CAS  Google Scholar 

  10. Li, C. Z.; Zhao, X. C.; Wang, A. Q.; Huber, G. W.; Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 2015, 115, 11559–11624.

    CAS  PubMed  Google Scholar 

  11. Gao, D. H.; Ouyang, D. H.; Zhao, X. B. Electro-oxidative depolymerization of lignin for production of value-added chemicals. Green Chem. 2022, 24, 8585–8605.

    CAS  Google Scholar 

  12. Chen, J.; Yang, H. L.; Fu, H. Q.; He, H. Y.; Zeng, Q.; Li, X. H. Electrochemical oxidation mechanisms for selective products due to C–O and C–C cleavages of β-O-4 linkages in lignin model compounds. Phys. Chem. Chem. Phys. 2020, 22, 11508–11518.

    CAS  PubMed  Google Scholar 

  13. Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Modern electrochemical aspects for the synthesis of value-added organic products. Angew. Chem., Int. Ed. 2018, 57, 6018–6041.

    Google Scholar 

  14. Liu, G. Y.; Wang, Q.; Yan, D. X.; Zhang, Y. Q.; Wang, C. L.; Liang, S. J.; Jiang, L. L.; He, H. Y. Insights into the electrochemical degradation of phenolic lignin model compounds in a protic ionic liquid-water system. Green Chem. 2021, 23, 1665–1677.

    CAS  Google Scholar 

  15. Wu, K. J.; Cao, M. L.; Zeng, Q.; Li, X. H. Radical and (photo) electron transfer induced mechanisms for lignin photo-and electro-catalytic depolymerization. Green Energy Environ. 2023, 8, 383–405.

    CAS  Google Scholar 

  16. Ma, W. L.; Liu, G. Y.; Wang, Q.; Liu, J.; Yuan, X. Q.; Xin, J. Y.; Wang, S. F.; He, H. Y. Ionic liquids enhance the electrocatalysis of lignin model compounds towards generating valuable aromatic molecules. J. Mol. Liq. 2022, 367, 120407.

    CAS  Google Scholar 

  17. Cui, T. T.; Ma, L. N.; Wang, S. B.; Ye, C. L.; Liang, X.; Zhang, Z. D.; Meng, G.; Zheng, L. R.; Hu, H. S.; Zhang, J. W. et al. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C–C bond cleavage in lignin models under ambient conditions. J. Am. Chem. Soc. 2021, 14, 9429–9439.

    Google Scholar 

  18. Du, X.; Zhang, H. C.; Sullivan, K. P.; Gogoi, P.; Deng, Y. L. Electrochemical lignin conversion. CheSusChem 2020, 13, 4318–4343.

    CAS  Google Scholar 

  19. Zhu, H. B.; Chen, Y. M.; Qin, T. F.; Wang, L.; Tang, Y.; Sun, Y. Z.; Wan, P. Y. Lignin depolymerization via an integrated approach of anode oxidation and electro-generated H2O2 oxidation. RSC Adv. 2014, 4, 6232–6238.

    ADS  CAS  Google Scholar 

  20. Singh, N.; Song, Y.; Gutiérrez, O. Y.; Camaioni, D. M.; Campbell, C. T.; Lercher, J. A. Electrocatalytic hydrogenation of phenol over platinum and rhodium: Unexpected temperature effects resolved. ACS Catal. 2016, 6, 7466–7470.

    CAS  Google Scholar 

  21. Meng, Q. L.; Hou, M. Q.; Liu, H. Z.; Song, J. L.; Han, B. X. Synthesis of ketones from biomass-derived feedstock. Nat. Commun. 2017, 8, 14190.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, Z. L.; Kelkar, S.; Raycraft, L.; Garedew, M.; Jackson, J. E.; Miller, D. J.; Saffron, C. M. A mild approach for bio-oil stabilization and upgrading: Electrocatalytic hydrogenation using ruthenium supported on activated carbon cloth. Green Chem. 2014, 16, 844–852.

    CAS  Google Scholar 

  23. Lam, C. H.; Lowe, C. B.; Li, Z. L.; Longe, K. N.; Rayburn, J. T.; Caldwell, M. A.; Houdek, C. E.; Maguire, J. B.; Saffron, C. M.; Miller, D. J. et al. Electrocatalytic upgrading of model lignin monomers with earth abundant metal electrodes. Green Chem. 2015, 17, 601–609.

    CAS  Google Scholar 

  24. DiStiefel, S.; Schmitz, A.; Peters, J.; Di Marino, D.; Wessling, M. An integrated electrochemical process to convert lignin to value-added products under mild conditions. Green Chem. 2016, 18, 6021–6028.

    Google Scholar 

  25. Wang, Y. S.; Yang, F.; Liu, Z. H.; Yuan, L.; Li, G. Electrocatalytic degradation of aspen lignin over Pb/PbO2 electrode in alkali solution. Catal. Commun. 2015, 67, 49–53.

    ADS  CAS  Google Scholar 

  26. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    ADS  CAS  Google Scholar 

  27. Luo, S. P.; Chen, W.; Cheng, Y.; Song, X.; Wu, Q. L.; Li, L. X.; Wu, X. T.; Wu, T. H.; Li, M. R.; Yang, Q. et al. Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation. Adv. Mater. 2019, 31, 1903683.

    CAS  Google Scholar 

  28. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    ADS  CAS  Google Scholar 

  29. Bosque, I.; Magallanes, G.; Rigoulet, M.; Kärkäs, M. D.; Stephenson, C. R. J. Redox catalysis facilitates lignin depolymerization. ACS Cent. Sci. 2017, 3, 621–628.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lancefield, C. S.; Ojo, O. S.; Tran, F.; Westwood, N. J. Isolation of functionalized phenolic monomers through selective oxidation and C-O bond cleavage of the ß-O-4 linkages in lignin. Angew. Chem. 2015, 127, 260–264.

    ADS  Google Scholar 

  31. Nguyen, J. D.; Matsuura, B. S.; Stephenson, C. R. J. A photochemical strategy for lignin degradation at room temperature. J. Am. Chem. Soc. 2014, 136, 1218–1221.

    CAS  PubMed  Google Scholar 

  32. Kim, S.; Chmely, S. C.; Nimlos, M. R.; Bomble, Y. J.; Foust, T. D.; Paton, R. S.; Beckham, G. T. Computational study of bond dissociation enthalpies for a large range of native and modified lignins. J. Phys. Chem. Lett. 2011, 2, 2846–2852.

    CAS  Google Scholar 

  33. Liang, L.; Yan, J. P.; He, Q.; Luong, T.; Pray, T. R.; Simmons, B. A.; Sun, N. Scale-up of biomass conversion using 1-ethyl-3-methylimidazolium acetate as the solvent. Green Energy Environ. 2019, 4, 432–438.

    Google Scholar 

  34. Wang, Y. C.; Wang, S. S.; Liu, L. L. Recovery of natural active molecules using aqueous two-phase systems comprising of ionic liquids/deep eutectic solvents. Green Chem. Eng. 2022, 3, 5–14.

    Google Scholar 

  35. Gurau, G.; Swadźba-Kwaśny, M.; Lu, X. M.; Dai, S. Frontiers of ionic liquids. Green Chem. Eng. 2021, 2, 337–338.

    Google Scholar 

  36. Rauber, D.; Dier, T. K. F.; Volmer, D. A.; Hempelmann, R. Electrochemical lignin degradation in ionic liquids on ternary mixed metal electrodes. Z. Phys. Chem. 2018, 232, 189–208.

    CAS  Google Scholar 

  37. Dier, T. K. F.; Rauber, D.; Durneata, D.; Hempelmann. R.; Volmer, D. A. Sustainable electrochemical depolymerization of lignin in reusable ionic liquids. Sci. Rep. 2017, 7, 5041.

    ADS  PubMed  PubMed Central  Google Scholar 

  38. Hong, L. C.; Spielmeyer, A.; Pfeiffer, J.; Wegner, H. A. Domino lignin depolymerization and reconnection to complex molecules mediated by boryl radicals. Catal. Sci. Technol. 2020, 10, 3008–3014.

    CAS  Google Scholar 

  39. Kresse, G.; Furthmüller, J. Efficiency of ab-inttio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  40. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    ADS  CAS  Google Scholar 

  41. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 18, 3865–3868.

    ADS  Google Scholar 

  42. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    ADS  PubMed  Google Scholar 

  43. Li, Z. J.; Li, H.; Li, M.; Hu, J. R.; Liu, Y. Y.; Sun, D. M.; Fu, G. T.; Tang, Y. W. Iminodiacetonitrile induce-synthesis of two-dimensional PdNi/Ni@carbon nanosheets with uniform dispersion and strong interface bonding as an effective bifunctional eletrocatalyst in air-cathode. Energy Storage Mater. 2021, 42, 118–128.

    Google Scholar 

  44. Zhou, Y. L.; Gao, Y. J.; Zhong, X.; Jiang, W. B.; Liang, Y. L.; Niu, P. F.; Li, M. C.; Zhuang, G. L.; Li, X. N.; Wang, J. G. Electrocatalytic upgrading of lignin-derived bio-oil based on surface-engineered PtNiB nanostructure. Adv. Funct. Mater. 2019, 29, 1807651.

    Google Scholar 

  45. Zhang, J. G.; Teo, J.; Chen, X.; Asakura, H.; Tanaka, T.; Teramura, K.; Yan, N. A series of NiM (M = Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. ACS Catal. 2014, 4, 1574–1583.

    CAS  Google Scholar 

  46. Loyson, P.; Imrie, C.; Gouws, S.; Barton, B.; Kruger, E. Bmim ionic liquids as media for the electrochemical oxidation of 2,6-di-t-butylphenol. J. Appl. Electrochem. 2009, 32, 1087–1095.

    Google Scholar 

  47. Rosen, B. A.; Haan, J. L.; Mukherjee, P.; Braunschweig, B.; Zhu, W.; Salehi-Khojin, A.; Dlott, D. D.; Masel, R. I. In situ spectroscopic examination of a low overpotential pathway for carbon dioxide conversion to carbon monoxide. J. Phys. Chem. C 2012, 116, 15307–15312.

    CAS  Google Scholar 

  48. Reichert, E.; Wintringer, R.; Volmer, D. A.; Hempelmann, R. Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid. Phys. Chem. Chem. Phys. 2012, 14, 5214–5221.

    CAS  PubMed  Google Scholar 

  49. Zhang, Y. M.; Peng, Y.; Yin, X. L.; Liu, Z. H.; Li, G. Degradation of lignin to BHT by electrochemical catalysis on Pb/PbO2 anode in alkaline solution. J. Chem. Technol. Biotechnol. 2014, 82, 1954–1960.

    Google Scholar 

  50. Gazi, S. Valorization of wood biomass-lignin via selective bond scission: A minireview. Appl. Catal. B:Environ. 2019, 257, 117936.

    CAS  Google Scholar 

  51. Zhang, J. Conversion of lignin models by photoredox catalysis. ChemSusChem 2018, 11, 3071–3080.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22078322, 21890762, 22178344, and 21834006) and the Youth Innovation Promotion Association CAS (No. Y2021022). The authors sincerely appreciate Prof. S. J. Z. (IPE, CAS) for his careful academic guidance and great support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shijing Liang or Hongyan He.

Electronic Supplementary Material

12274_2023_6086_MOESM1_ESM.pdf

Ionic liquid-trimetallic electrocatalytic system for C-O bond cleavage in lignin model compounds and lignin under ambient conditions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Lu, Y., Lu, J. et al. Ionic liquid-trimetallic electrocatalytic system for C-O bond cleavage in lignin model compounds and lignin under ambient conditions. Nano Res. 17, 2420–2428 (2024). https://doi.org/10.1007/s12274-023-6086-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6086-z

Keywords

Navigation