Skip to main content
Log in

Construction of meloxicam and bupivacaine co-delivery nanosystem based on the pathophysiological environment of surgical injuries for enhanced postoperative analgesia

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Besides peripheral nerve injury, the acute inflammation is one of the pathological features of tissues after surgery, which exacerbates the postoperative pain, especially in the first 48 h after the surgery. Multimodal analgesia (MMA), such as the combination of non-steroidal anti-inflammatory drugs (NSAIDs) with local anesthetics, has shown enhanced potency compared with the usage of local anesthetics alone. However, rare formulations can provide long-term analgesia at a single dose. Herein, bupivacaine (BUP, a local anesthetic) loading poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPB) were coated with meloxicam (MLX, an NSAID) loading lipid bilayer (LPM), forming a core–shell nanosystem (NPB@LPM) to provide enhanced and long-term analgesia to treat postoperative pain. MLX was encapsulated in the lipid shell, which enabled high dose MLX to be released in the first 48 h after surgery to reduce the acute inflammation induced pain. BUP was encapsulated in the PLGA core to provide a long-term release for the nerve block. This nanosystem provided a 7-day (whole recovery cycle) effective analgesia in the Brennan’s plantar incision rat model. The tissue reactions of NPB@LPM are benign. This work will provide feasible strategies on designing drug delivery systems for postoperative pain management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joshi, G. P.; Schug, S. A.; Kehlet, H. Procedure-specific pain management and outcome strategies. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 191–201.

    Google Scholar 

  2. Mercado, L. A. S. C.; Liu, R.; Bharadwaj, K. M.; Johnson, J. J.; Gutierrez, R.; Das, P.; Balanza, G.; Deng, H.; Pandit, A.; Stone, T. A. D. et al. Association of intraoperative opioid administration with postoperative pain and opioid use. JAMA Surg. 2023, 14, e232009.

    Google Scholar 

  3. Feray, S.; Lubach, J.; Joshi, G. P.; Bonnet, F.; Van De Velde, M.; The PROSPECT Working Group ⋆of the European Society of Regional Anaesthesia and Pain Therapy. PROSPECT guidelines for video-assisted thoracoscopic surgery: A systematic review and procedure-specific postoperative pain management recommendations. Anaesthesia 2022, 77, 311–325.

    CAS  Google Scholar 

  4. Joshi, G. P.; Van De Velde, M.; Kehlet, H.; the PROSPECT Working Group Collaborators. Development of evidence-based recommendations for procedure-specific pain management: PROSPECT methodology. Anaesthesia 2019, 74, 1298–1304.

    CAS  Google Scholar 

  5. Dinh, K. H.; Mcauliffe, P. F.; Boisen, M.; Esper, S. A.; Subramaniam, K.; Steiman, J. G.; Soran, A.; Johnson, R. R.; Holder-Murray, J. M.; Diego, E. J. Post-operative nausea and analgesia following total mastectomy is improved after implementation of an enhanced recovery protocol. Ann. Surg. Oncol. 2020, 27, 4828–4834.

    Google Scholar 

  6. Aiolfi, A.; Cavalli, M.; Ferraro, S. D.; Manfredini, L.; Bonitta, G.; Bruni, P. G.; Bona, D.; Campanelli, G. Treatment of inguinal hernia: Systematic review and updated network meta-analysis of randomized controlled trials. Ann. Surg. 2021, 274, 954–961.

    Google Scholar 

  7. Eisenach, J. C.; Brennan, T. J. Pain after surgery. PAIN 2018, 159, 1010–1011.

    Google Scholar 

  8. Hämäläinen, M. M.; Gebhart, G. F.; Brennan, T. J. Acute effect of an incision on mechanosensitive afferents in the plantar rat hindpaw. J. Neurophysiol. 2002, 87, 712–720.

    Google Scholar 

  9. Brennan, T. J. Pathophysiology of postoperative pain. Pain 2011, 152, S33–S40.

    Google Scholar 

  10. Spofford, C. M.; Brennan, T. J. Gene expression in skin, muscle, and dorsal root ganglion after plantar incision in the rat. Anesthesiology 2012, 117, 161–172.

    Google Scholar 

  11. Thybo, K. H.; Hägi-Pedersen, D.; Dahl, J. B.; Wetterslev, J.; Nersesjan, M.; Jakobsen, J. C.; Pedersen, N. A.; Overgaard, S.; Schroder, H. M.; Schmidt, H. et al. Effect of combination of paracetamol (acetaminophen) and ibuprofen vs either alone on patient-controlled morphine consumption in the first 24 hours after total hip arthroplasty: The PANSAID randomized clinical trial. JAMA 2019, 321, 562–571.

    CAS  Google Scholar 

  12. Wick, E. C.; Grant, M. C.; Wu, C. L. Postoperative multimodal analgesia pain management with nonopioid analgesics and techniques: A review. JAMA Surg. 2017, 152, 691–697.

    Google Scholar 

  13. He, Y. M.; Sun, F. R.; Li, M. H.; Ji, T. J.; Fang, Y. H.; Tan, G.; Ma, C.; Huang, Y. G. A Gel/fiber composite formulation achieves sequential delivery based on multimodal analgesia reducing chronic pain. Mater. Design 2023, 225, 111541.

    CAS  Google Scholar 

  14. He, Y. M.; Qin, L. N.; Huang, Y. G.; Ma, C. Advances of nano-structured extended-release local anesthetics. Nanoscale Res. Lett. 2020, 15, 13.

    Google Scholar 

  15. Zhang, W. J.; Ning, C.; Xu, W. G.; Hu, H. Z.; Li, M. Q.; Zhao, G. Q.; Ding, J. X.; Chen, X. S. Precision-guided long-acting analgesia by gel-immobilized bupivacaine-loaded microsphere. Theranottics 2018, 8, 3331–3347.

    CAS  Google Scholar 

  16. Parisien, M.; Lima, L. V.; Dagostino, C.; El-Hachem, N.; Drury, G. L.; Grant, A. V.; Huising, J.; Verma, V.; Meloto, C. B.; Silva, J. R. et al. Acute inflammatory response via neutrophil activation protects against the development of chronic pain. Sci. Transl. Med. 2022, 14, eabj9954.

    CAS  Google Scholar 

  17. Ji, T. J.; Kohane, D. S. Nanoscale systems for local drug delivery. Nano Today 2019, 28, 100765.

    Google Scholar 

  18. Kaye, A. D.; Novitch, M. B.; Carlson, S. F.; Fuller, M. C.; White, S. W.; Haroldson, A. R.; Kaiser, J. A.; Elkersh, M. A.; Brunk, A. J.; Jeha, G. M. et al. The role of exparel plus meloxicam for postoperative pain management. Curr. Pain Headache Rep. 2020, 24, 6.

    Google Scholar 

  19. Noolkar, S. B.; Jadhav, N. R.; Bhende, S. A.; Killedar, S. G. Solid-state characterization and dissolution properties of meloxicammoringa coagulant-PVP ternary solid dispersions. AAPS PharmSciTech 2013, 14, 569–577.

    CAS  Google Scholar 

  20. Xu, J.; Brennan, T. J. Guarding pain and spontaneous activity of nociceptors after skin versus skin plus deep tissue incision. Anesthesiology 2010, 112, 153–164.

    Google Scholar 

  21. Chen, S. F.; Yao, W. F.; Wang, H. X.; Wang, T. N.; Xiao, X.; Sun, G. L.; Yang, J.; Guan, Y.; Zhang, Z.; Xia, Z. Y. et al. Injectable electrospun fiber-hydrogel composite sequentially releasing clonidine and ropivacaine for prolonged and walking regional analgesia. Theranostics 2022, 12, 4904–4921.

    CAS  Google Scholar 

  22. Yu, C.; Xu, Z. X.; Hao, Y. H.; Gao, Y. B.; Yao, B. W.; Zhang, J.; Wang, B.; Hu, Z. Q.; Peng, R. Y. A novel microcurrent dressing for wound healing in a rat skin defect model. Mil. Med. Res. 2019, 6, 22.

    Google Scholar 

  23. Janssen, L.; Allard, N. A. E.; Saris, C. G. J.; Keijer, J.; Hopman, M. T. E.; Timmers, S. Muscle toxicity of drugs: When drugs turn physiology into pathophysiology. Physiol. Rev. 2020, 100, 633–672.

    Google Scholar 

  24. Choi, S. E.; Park, Y. S.; Koh, H. C. NF-κB/p53-activated inflammatory response involves in diquat-induced mitochondrial dysfunction and apoptosis. Environ. Toxicol. 2018, 33, 1005–1018.

    CAS  Google Scholar 

  25. Hussey, H. J.; Tisdale, M. J. Effect of the specific cyclooxygenase-2 inhibitor meloxicam on tumour growth and cachexia in a murine model. Int. J. Cancer 2000, 87, 95–100.

    CAS  Google Scholar 

  26. Li, X. N.; Xu, J. J.; Wu, J. B.; Ji, L.; Yuan, C. H.; Wang, Z. P. Curcumin exerts protective effect on PC12 cells against lidocaine-induced cytotoxicity by suppressing the formation of NLRP3 inflammasome. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7092–7100.

    Google Scholar 

  27. Ferre, F.; Krin, A.; Sanchez, M.; Ancelin, D.; Cavaignac, E.; Charre, A.; Bennis, M.; Marty, P.; Dray, C.; Brouchet, A. et al. Perineural dexamethasone attenuates liposomal bupivacaine-induced delayed neural inflammation in mice in vivo. Br. J. Anaesth. 2020, 125, 175–183.

    CAS  Google Scholar 

  28. Chen, J.; Wang, Y. T.; Yu, Y. L.; Wang, J. H.; Liu, J. W.; Ihara, H. Qiu, H. D. Composite materials based on covalent organic frameworks for multiple advanced applications. Exploration 2023, 3, 20220144.

    Google Scholar 

  29. Zheng, C. X.; Li, M. Q.; Ding, J. X. Challenges and opportunities of nanomedicines in clinical translation. BIO Integration. 2021, 2, 57–60.

    Google Scholar 

  30. Younis, M. A.; Tawfeek, H. M.; Abdellatif, A. A. H.; Abdel-Aleem, J. A.; Harashima, H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv. Drug Deliv. Rev. 2022, 181, 114083.

    CAS  Google Scholar 

  31. Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

    CAS  Google Scholar 

  32. Zhao, Z. M.; Ukidve, A.; Gao, Y. S.; Kim, J.; Mitragotri, S. Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis. Sci. Adv. 2019, 5, eaax9250.

    CAS  Google Scholar 

  33. Ebeid, K.; Meng, X. B.; Thiel, K. W.; Do, A. V.; Geary, S. M.; Morris, A. S.; Pham, E. L.; Wongrakpanich, A.; Chhonker, Y. S.; Murry, D. J. et al. Synthetically lethal nanoparticles for treatment of endometrial cancer. Nat. Nanotechnol. 2018, 13, 72–81.

    CAS  Google Scholar 

  34. Zhou, L. T.; Ye, Z. Y.; Zhang, E.; Chen, L.; Hou, Y. T.; Lin, J. C.; Huang, F. L.; Yuan, Z. X. Co-delivery of dexamethasone and captopril by α8 integrin antibodies modified liposome-PLGA nanoparticle hybrids for targeted anti-inflammatory/anti-fibrosis therapy of glomerulonephritis. Int. J. Nanomedicine 2022, 17, 1531–1547.

    CAS  Google Scholar 

  35. Ji, W. H.; Zhang, T. L.; Lu, Z. G.; Shen, J.; Xiao, Z. B.; Zhang, X. Synthesis and characterization of novel biocompatible nanocapsules encapsulated lily fragrance. Chin. Chem. Lett. 2019, 30, 739–742.

    CAS  Google Scholar 

  36. Zhou, Y.; Fang, A. P.; Wang, F. Z.; Li, H. L.; Jin, Q. S.; Huang, L. J.; Fu, C. M.; Zeng, J.; Jin, Z. H.; Song, X. R. Core-shell lipid-polymer nanoparticles as a promising ocular drug delivery system to treat glaucoma. Chin. Chem. Lett. 2020, 31, 494–500.

    CAS  Google Scholar 

  37. Zhou, Z. F.; Ye, J. F.; Chen, L. Y.; Ma, A. D.; Zou, F. Simultaneous determination of ropivacaine, bupivacaine and dexamethasone in biodegradable PLGA microspheres by high performance liquid chromatography. Yakugaku Zasshi 2010, 130, 1061–1068.

    CAS  Google Scholar 

  38. Wen, K.; Na, X. M.; Yuan, M. M.; Bazybek, N.; Li, X.; Wei, Y.; Ma, G. H. Preparation of novel ropivacaine hydrochloride-loaded PLGA microspheres based on post-loading mode and efficacy evaluation. Colloids Surf. B: Biointerfaces 2022, 210, 112215.

    CAS  Google Scholar 

  39. Epstein-Barash, H.; Shichor, I.; Kwon, A. H.; Hall, S.; Lawlor, M. W.; Langer, R.; Kohane, D. S. Prolonged duration local anesthesia with minimal toxicity. Proc. Natl. Acad. Sci. USA 2009, 106, 7125–7130.

    CAS  Google Scholar 

  40. Maurice, J. M.; Gan, Y.; Ma, F. X.; Chang, Y. C.; Hibner, M.; Huang, Y. Bupivacaine causes cytotoxicity in mouse C2C12 myoblast cells: Involvement of ERK and Akt signaling pathways. Acta Pharmacol. Sin. 2010, 31, 493–500.

    CAS  Google Scholar 

  41. Weldon, C.; Ji, T. J.; Nguyen, M. T.; Rwei, A.; Wang, W. P.; Hao, Y.; Zhao, C.; Mehta, M.; Wang, B. Y.; Tsui, J. et al. Nanoscale bupivacaine formulations to enhance the duration and safety of intravenous regional anesthesia. ACS Nano 2019, 13, 18–25.

    CAS  Google Scholar 

  42. Brennan, T. J.; Vandermeulen, E. P.; Gebhart, G. F. Characterization of a rat model of incisional pain. Pain 1996, 64, 493–502.

    Google Scholar 

  43. Pilkington, S. M.; Rhodes, L. E.; Al-Aasswad, N. M. I.; Massey, K. A.; Nicolaou, A. Impact of EPA ingestion on COX- and LOX-mediated eicosanoid synthesis in skin with and without a pro-inflammatory UVR challenge-report of a randomised controlled study in humans. Mol. Nutr. Food Res. 2014, 58, 580–90.

    CAS  Google Scholar 

  44. Masoodi, M.; Nicolaou, A. Lipidomic analysis of twenty-seven prostanoids and isoprostanes by liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 3023–3029.

    CAS  Google Scholar 

  45. Chopra, S.; Giovanelli, P.; Alvarado-Vazquez, P. A.; Alonso, S.; Song, M.; Sandoval, T. A.; Chae, C. S.; Tan, C.; Fonseca, M. M.; Gutierrez, S. et al. IRE1a-XBP1 signaling in leukocytes controls prostaglandin biosynthesis and pain. Science 2019, 365, eaau6499.

    CAS  Google Scholar 

  46. Li, Q. B.; Chang, L.; Ye, F.; Luo, Q. H.; Tao, Y. X.; Shu, H. H. Role of spinal cyclooxygenase-2 and prostaglandin E2 in fentanyl-induced hyperalgesia in rats. Br. J. Anaesth. 2018, 120, 827–835.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National High Level Hospital Clinical Research Funding (Nos. 2022-PUMCH-B-006 and 2022-PUMCH-C-067), the National Natural Science Foundation of China (No. 32271391), and Beijing Natural Science Foundation (No. Z220022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianjiao Ji or Yuguang Huang.

Electronic Supplementary Material

12274_2023_6074_MOESM1_ESM.pdf

Construction of meloxicam and bupivacaine co-delivery nanosystem based on the pathophysiological environment of surgical injuries for enhanced postoperative analgesia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., He, Y., Liu, Z. et al. Construction of meloxicam and bupivacaine co-delivery nanosystem based on the pathophysiological environment of surgical injuries for enhanced postoperative analgesia. Nano Res. 16, 13301–13308 (2023). https://doi.org/10.1007/s12274-023-6074-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6074-3

Keywords

Navigation